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Abstract

We consider the unidirectional cyclic system of delay differential equations

ẋi(t) = gi(xi(t), xi+1(t− τ i), t), 0 ≤ i ≤ N,

where the indexes are taken modulo N + 1, with N ∈ N0, τ i ∈ [0,∞), τ :=
∑N
i=0 τ

i > 0, and for all
0 ≤ i ≤ N , the feedback functions gi(u, v, t) are continuous in t ∈ R and C1 in (u, v) ∈ R2, and each of
them satisfies either a positive or a negative feedback condition in the delayed term.

We show that all components of a superexponential solution (i.e. nonzero solutions that converge
to zero faster than any exponential function) must have infinitely many sign-changes on any interval of
length τ . As a corollary we obtain that if a backwards-bounded global pullback attractor exists, then it
does not contain any superexponential solutions. In the autonomous case we also prove that the global
attractor possesses a Morse decomposition that is based on a discrete Lyapunov function. This generalizes
former results by Mallet-Paret [J. Differential Equations 72 (1988), 270–315] and Polner [Nonlinear Anal.
48 (2002), 377–397] in which the scalar case was studied.
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1. Introduction

Let us consider the unidirectional cyclic system of delay differential equations

ẇi(t) = gi(wi(t), wi+1(t− τ i), t), 0 ≤ i ≤ N, (1.1)

where the indexes are taken modulo N + 1, with N ∈ N0; τ i ∈ [0,∞), τ :=
∑N
i=0 τ

i > 0, and for all
0 ≤ i ≤ N , the feedback functions gi(u, v, t) are continuous in t ∈ R and continuously differentiable in
(u, v) ∈ R2, moreover, they fulfill the feedback assumptions:

(H0) there exist δi := δ(gi) ∈ {−1, 1}, such that δivgi(0, v, t) > 0 holds for all v 6= 0 and t ∈ R;

(H1) there exist positive constants M := M(g), a1 := a1(g), b0 := b0(g) and b1 := b1(g) such that

|D1g
i(u, v, t)| ≤ a1 and b0 ≤ δiD2g

i(0, v, t) ≤ b1

hold for all (u, v, t) ∈ [−M,M ]2 × R and 0 ≤ i ≤ N , where Dj denotes differentiation with respect
to the j-th variable.

Note that gi(0, 0, ·) ≡ 0 follows from continuity of gi and assumption (H0), so the origin is an
equilibrium.

Such equations were studied in detail in the seminal papers by Mallet-Paret and Sell [29, 30] in a
more general setting (with bidirectional connection-topology) – see also the ODE case without delay in
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[16, 17, 31]. These equations have many applications from life sciences, computer science and economy.
Without attempting to be exhaustive, equations of the form (1.1) arise in various models of biological
regulatory systems [18, 20, 27, 34, 39, 40], physiology [26], population dynamics [7, 13], neural networks
[1, 14, 19, 21, 41], as well as in economics – see [32] and some references therein.

A solution w of (1.1) is called small if

lim
t→∞

eβtw(t) = 0

holds for all β ∈ R. A small solution is said to be nontrivial if it is not identically 0. Nontrivial small
solutions are also called superexponential.

The non-existence of superexponential solutions is a central question in the analysis of functional
differential equations. Borrowing the words of Mallet-Paret and Sell [30], “Perhaps the most challenging of
those [issues which are peculiar to infinite dimensional systems] involves the existence, and non-existence,
of so-called superexponential solutions”.

Our first main result (Theorem 2.2) establishes that any component wi of a superexponential solution
of (1.1) must change signs infinitely often on any interval of length τ . This was already proved for
the autonomous, scalar case (i.e. N = 0) with negative feedback by Mallet-Paret [28] and later for the
nonautonomous scalar case with either positive or negative feedback by Cao [2]. Further similar results
were obtained for the scalar case with state-dependent delay by Cao [3] and Krisztin and Arino [24].

For certain classes of nonlinear cyclic systems, Ducrot [12] proved an analogous result, which is
independent of ours: neither implies the other.

For a nonautonomous linear system of equations, Cooke and Verduyn Lunel established rather general
sufficient conditions for the non-existence of superexponential solutions [8]. Although solutions of (1.1)
can be transformed to solutions of nonautonomous linear equations, their results do not apply for our
case. The reason is that their approach requires that the coefficient functions are real analytic, which
is not guaranteed in our case. Later, Cooke and Derfel [10, 9] illustrated by counterexamples that the
assumption on analyticity is not merely technical. See also Remark 2.10 for more details.

Let us mention two concrete motivational examples for Theorem 2.2:
(1) In [28] and in [37], equation (1.1) was studied in the scalar, autonomous case (with negative,

resp. positive feedback), and excluding the existence of superexponential solutions on the global attractor
was crucial for the proof of the existence of a Morse decomposition of the global attractor.

(2) Pituk in [36, Corollary 4.4] established an “oscillation by linearization” theorem for a scalar delay
differential equation with several delays: he showed that provided all solutions of the linearized equation
which tend to zero at infinity are oscillatory, then so is every such solution of the original equation. A
key step in the proof is establishing that eventually positive solutions of the original equation cannot be
superexponential.

As a consequence of Theorem 2.2 we obtain that provided a backwards-bounded global pullback
attractor (or simply the global attractor in the autonomous case) related to (1.1) exists, it does not
contain any superexponential solutions (see Theorem 2.9).

Section 3 focuses on the autonomous case under the assumption that the global attractor exists.
When studying the long-time behavior of a dynamical system, beyond merely the existence of the global
attractor, one is rather interested in its structure. Under some monotonicity assumptions on the feedback
functions gi, Mallet-Paret and Sell could prove a Poincaré–Bendixson-type result in [29]. Although,
such a strong result is not expected to hold in the general case, it is possible to construct a Morse
decomposition of the attractor, i.e. a finite collection of pairwise disjoint, compact, invariant subsets of
the global attractor, which are ordered in the sense, that – roughly speaking – the dynamics on the
attractor and outside these sets is gradient-like (see Section 3 for the precise definition). This can be
found in Theorem 3.2, which is the other main result of the paper. The decomposition is based on
a discrete Lyapunov function, introduced by Mallet-Paret and Sell [30], which essentially counts the
number of sign-changes on segments of the solutions. This function has proven to be a very efficient tool
in analyzing the structure of the global attractor. Our theorem and its proof are analogs of those from
[28, 37] (resp. [15]), for the scalar delay-differential (resp. delay-difference) equation. The argument –
both in the scalar and in our case – extensively uses the properties of this Lyapunov function, and also
requires detailed information on the spectrum of the linearized equation. These have all been available
in the general setting, thanks to [29, 30] (see also Section 3.1). However, there is a particular part in
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the argument (Proposition 3.9 in our paper), where the absence of superexponential solutions – more
precisely, an estimate on the decay of the norm of the solution in terms of the number of sign-changes –
seems to be inevitable, since this allows one to describe the asymptotic behavior of solutions on the
stable manifold of the origin by the associated linear equation. These results are given in Theorem 2.2
and Proposition 2.8.

Let us also point out, that a recent work of Ivanov and Lani-Wayda [23] provides sufficient conditions
for the existence of a periodic solution of a somewhat less general version of (1.1), suggesting that the
decomposition given in Theorem 3.2 is nontrivial (see also Remark 3.4).

The paper is organized as follows. Section 2 deals with the general, nonautonomous case. We provide
estimates on the maximal rate of decay of solutions in terms of the number of sign-changes of the
solutions on certain intervals. The main result of the section (Theorem 2.2) states that components of
superexponential solutions must change sign infinitely often on any interval of length τ . As a corollary
one obtains the absence of superexponential solutions on backwards-bounded global pullback attractors
(or simply on the global attractor in the autonomous case) – see Theorem 2.9. Section 3 is devoted to
the construction of a Morse decomposition of the global attractor in the autonomous case, which is given
in Theorem 3.2.

2. Superexponential solutions and superhigh-frequency oscillations

2.1. Preliminaries

Since our focus is on superexponential solutions and on the global attractor, we will often assume
that the solution we study exists globally in forward time. Following [30] and using notations

σ0 = 1, γ0 = 0 and σi :=

i−1∏
j=0

δ(gj), γi :=

i−1∑
j=0

τ j for all 1 ≤ i ≤ N, (2.1)

and

f i(u, v, t) = σiτgi(σiu, σi+1v, τt− γi), (2.2)

the invertible transformation xi(t) := σiwi(τt− γi) takes system (1.1) into the canonical form

ẋi(t) = f i(xi(t), xi+1(t), t), 0 ≤ i ≤ N − 1

ẋN (t) = fN (xN (t), x0(t− 1), t),
(2.3)

where the nonlinearities f i(u, v, t) are continuous in t ∈ R, C1 in (u, v) ∈ R2 and satisfy conditions
(H0) and (H1) – with some appropriate constants a1(f), b0(f), b1(f), M(f), δ(f i) – such that here
δ(fN ) ∈ {−1, 1} and δ(f i) = 1 for all 0 ≤ i ≤ N − 1. Determined by the sign of δ(fN ) we say that
system (2.3) has negative (resp. positive) feedback.

For an interval I ⊆ R, let Ĩ denote the interval {s+ t : s ∈ [−1, 0], t ∈ I}. We say that a continuous
function x : Ĩ → RN+1 is a solution of equation (2.3) on I, if it is differentiable on I and satisfies (2.3)
there. A differentiable function x : R→ RN+1 is called an entire solution of (2.3) if it fulfills the equation
for all t ∈ R.

Using notation K := [−1, 0]∪ {1, . . . , N}, the natural state space for (2.3) – in accordance with [30] –
is the Banach space of continuous functions CK := C(K,R) equipped with the supremum norm that we
will denote by ‖·‖CK . For arbitrary t0 ∈ R and ϕ ∈ CK, there exists a unique maximal forward solution x
on (t0, t

∗) for some t∗ ∈ (t0,∞], that fulfills the initial condition xt0 = ϕ, by which we mean

x0|[t0−1,t0] = ϕ|[−1,0] and xi(t0) = ϕ(i) for all 1 ≤ i ≤ N. (2.4)

It is worth here noticing that, although we do not have backward uniqueness, the zero solution is
unique in backward time (see [29, p. 451]).

It is clear from (2.1) and the transformation xi(t) := σiwi(τt − γi) that a solution w of (1.1) is
superexponential if and only if x is a superexponential solution of (2.3).

Considering equation in the form (2.3) has several advantages: one of the most important among
those is the fact that, according to [30], there are discrete Lyapunov functions available for (2.3). More
precisely, let us introduce the functions
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V + : CK \ {0} → {0, 2, 4, . . . ,∞}, V − : CK \ {0} → {1, 3, 5, . . . ,∞},

V +(ϕ) =

{
sc(ϕ,K), if sc(ϕ,K) is even or infinite,

sc(ϕ,K) + 1, if sc(ϕ,K) is odd,

V −(ϕ) =

{
sc(ϕ,K), if sc(ϕ,K) is odd or infinite,

sc(ϕ,K) + 1, if sc(ϕ,K) is even,

where sc(ϕ,A) denotes the number of sign-changes of a real function ϕ on the set A ⊆ domϕ, that is

sc(ϕ,A) = sup
{
k ≥ 0 : there exist θi ∈ A, for 0 ≤ i ≤ k

with θi−1 < θi and ϕ(θi−1)ϕ(θi) < 0 for 1 ≤ i ≤ k
} (2.5)

Then, as stated in the next proposition, function V + (resp. V −), is nonincreasing along solutions of
(2.3) with positive (resp. negative) feedback.

Proposition 2.1 ([29, Theorem 4.1]). Let V denote either V + or V − (determined by the sign of δ(fN )),
and let x : [t0 − 1,∞) → RN+1 be a nontrivial solution of (2.3). Then V (xt1) ≥ V (xt2) holds for all
t1 > t2 ≥ t0.

Now we will relate solutions of (2.3) to some nonautonomous linear delay equations. Take M = M(f)
from hypothesis (H1), and suppose that x : [t0−1,∞)→ RN+1 is a solution of (2.3) such that |xi(t)| ≤M
for all 0 ≤ i ≤ N and t ≥ t0 − 1. Then x is also a solution of equation

ẋi(t) = αi(t)xi(t) + βi(t)xi+1(t), 0 ≤ i ≤ N − 1,

ẋN (t) = αN (t)xN (t) + βN (t)x0(t− 1)
(2.6)

with continuous functions

αi(t) =

∫ 1

0

D1f
i(hxi(t), xi+1(t), t) dh (2.7)

and

βi(t) =

∫ 1

0

D2f
i(0, hxi+1(t), t) dh, (2.8)

where xN+1(t) := x0(t− 1).
Here we have used that f i(0, 0, t) = 0 for all t ∈ R. Note also that

βi(t) =


f i(0, xi+1(t), t)

xi+1(t)
, if xi+1(t) 6= 0

D2f
i(0, 0, t), otherwise.

Observe that feedback condition (H1) implies that the functions αi and βi satisfy hypothesis (H ′1)
(on the interval t ∈ [t0,∞)), which reads as follows:

(H ′1) there exist positive constants α1, β0 and β1, such that |αi(t)| ≤ α1 and β0 ≤ δiβi(t) ≤ β1 hold for
all t and for all 0 ≤ i ≤ N with δN ∈ {−1, 1} and δi = 1 for all 0 ≤ i ≤ N − 1.

Furthermore, note that equation (2.6) is a special case of (2.3), and consequently Proposition 2.1 also
applies. We will take advantage of this fact, however, for our purposes it will be convenient to apply for
a solution x : [t0 − 1,∞)→ RN+1 of (2.6) a simple transformation

z : [−1,∞)→ RN+1, zi(t) := xi
(
t0 + t+i

N+1

)
, 0 ≤ i ≤ N,

in order to obtain the following more symmetric system of equations:

żi(t) = ai(t)zi(t) + bi(t)zi+1(t− 1), 0 ≤ i ≤ N, (2.9)
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with zN+1(t) := z0(t), where for t ≥ 0,

ai(t) =
αi
(
t0 + t+i

N+1

)
N + 1

, bi(t) =
βi
(
t0 + t+i

N+1

)
N + 1

. (2.10)

Clearly, the functions ai and bi are continuous and on the interval [0,∞) they fulfill the hypothesis

(H ′′1 ) there exist positive constants a1, b0 and b1, such that |ai(t)| ≤ a1 and b0 ≤ δibi(t) ≤ b1 hold for all
t and for all 0 ≤ i ≤ N with δN ∈ {−1, 1} and δi = 1 for all 0 ≤ i ≤ N − 1.

We say that a function z is a solution of equation (2.9) on an interval I, if z : Ĩ → RN+1 is continuous
and it is differentiable on I and satisfies (2.9) there. The natural state-space for equations of the form
(2.9) is the Banach space C := C([−1, 0],R)N+1 equipped with the supremum norm.

Now, for a solution z : [t0−1,∞) of equation (2.9) that satisfies (H ′′1 ), the change of variables yi(t) :=

exp
(
−
∫ t
t0
ai(s) ds

)
zi(t) for t ≥ t0 we obtain that y : [t0,∞)→ RN+1 is a solution of the following system

of delay differential equations:

ẏi(t) = ci(t)yi+1(t− 1), 0 ≤ i ≤ N, t ≥ t0 + 1

with

ci(t) = bi(t) exp

(∫ t−1

t0

ai+1(s) ds−
∫ t

t0

ai(s) ds

)
and aN+1(t) := a0(t).

The above properties of functions ai and bi imply that functions ci are continuous and for any bounded
interval there exist 0 < c0 < c1 < ∞, such that c0 ≤ δici(t) ≤ c1 for all 0 ≤ i ≤ N , with δN ∈ {−1, 1}
and δi = 1 for all 0 ≤ i ≤ N − 1.

2.2. Main result

The main result of this section is the following theorem.

Theorem 2.2. Assume that conditions (H0) and (H1) are satisfied, and suppose that x is a solution of
(2.3) on an interval [t0,∞) fulfilling V (xt1) <∞ for some t1 ∈ [t0,∞) with V = V + (resp. V = V −) in
case of positive (resp. negative) feedback. Then x is not superexponential.

Remark 2.3.

(1) Another formulation of Theorem 2.2 is that superexponential solutions of (2.3) must change sign
infinitely many times on any subinterval of length 1. In view of the formulas (2.1)–(2.2) and
transformation xi(t) := σiwi(τt − γi), this yields, that the component w0 of a superexponential
solution of the original equation (1.1) changes sign infinitely often on any subinterval of length τ .
Due to symmetry of equation (1.1), this statement holds for any component wi, 0 ≤ i ≤ N .

(2) If (2.3) is autonomous, then – thanks to the C1-smoothness of the right-hand side – assumption (H1)
reduces to

(Ha
1 ) D2f

i(0, 0) 6= 0 for all 0 ≤ i ≤ N .

The rest of this subsection is devoted to the proof of the above theorem. The proof is carried out in
several steps via a number of auxiliary results.

Motivated by the arguments and transformations presented in Section 2.1, let us consider equations
of the form

ẏi(t) = ci(t)yi+1(t− 1), 0 ≤ i ≤ N, t ∈ I, (2.11)

where I is an interval, and the functions ci are continuous for all 0 ≤ i ≤ N and fulfill the following
hypothesis.

(H2) There exist 0 < c0 < c1 < ∞, such that c0 ≤ δici(t) ≤ c1 for all 0 ≤ i ≤ N and t ∈ I, with
δN ∈ {−1, 1} and δi = 1 for all 0 ≤ i ≤ N − 1.
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For a solution z : [t0 − 1,∞)→ RN+1 of equation (2.9) and for t ≥ t0, we denote by zt the map in C
for which zt(s) = z(t + s) holds for all s ∈ [−1, 0]. We apply the same notation for solutions of (2.11),
too. Note that we also use this notation for segments of solutions x of the equation (2.3), where xt ∈ CK
(see (2.4)). This should not cause any confusion, as yt and zt will always be in C, whereas xt is in CK.
Nonetheless, these notations will mostly appear with norms applied to them, which will make it even
more unambiguous, since the supremum norms are denoted differently in these spaces (i.e. ‖ · ‖, resp.
‖·‖CK).

The below results and their proofs follow the arguments and ideas presented in [25] and [24] for the
scalar case and slow oscillations. As is also noted in those works, the main ideas originate from [28, 2]
and [3].

The indexes should be understood modulo N + 1 throughout the proofs.

Lemma 2.4. Let I be an interval and y be a solution of (2.11) on I with continuous functions ci satisfying
(H2) on I for all 0 ≤ i ≤ N . Then for all ε ∈ (0, 1) and k ∈ N, there exists Ck(ε, c0) > 0 such that the
inequality

min
s∈J
|yi(s)| ≤ Ck‖yt‖ (2.12)

holds for all 0 ≤ i ≤ N and for any closed interval J ⊂ [t− k, t] of length ε, provided [t− k + 1, t] ⊆ I.

Proof. First of all, the statement holds obviously for k = 1 with C1 := 1. Similarly, for arbitrary k ∈ N,
if J ∩ [t− 1, t] 6= ∅, then choosing Ck ≥ 1 guarantees that (2.12) holds. Thus by assuming Ck ≥ 1 we may
suppose that J ⊆ [t− k, t− 1] holds.

We prove the lemma by mathematical induction over k.
If J := [s1 − 1, s2 − 1] ⊆ [t− 2, t− 1] with t− 1 ≤ s1 < s1 + ε = s2 ≤ t, then the following estimates

hold for all 0 ≤ i ≤ N :

2‖yt‖ ≥
∣∣yi−1(s2)− yi−1(s1)

∣∣ =

∣∣∣∣∫ s2

s1

ci−1(u)yi(u− 1) du

∣∣∣∣ ≥ c0εmin
s∈J

∣∣yi(s)∣∣ .
Hence the statement holds with C2(ε, c0) = 2

c0ε
.

Now assume that the statement holds for some k = m ≥ 2 and consider intervals J ⊆ [t−m−1, t−1]
of length ε. If the length of the interval J ∩ [t −m, t − 1] is at least ε

2 , then inequality (2.12) holds by
letting Cm+1(ε, c0) := Cm( ε2 , c0).

There remains the case when the length of the interval J ∩ [t−m− 1, t−m] is strictly greater than
ε
2 . Then we can choose t1, t2 ∈ [t−m, t− (m− 1)] such that t2 = t1 + ε

2 and [t1 − 1, t2 − 1] ⊂ J . Let us
consider two subintervals [t1, t1 + ε

6 ] and [t2 − ε
6 ] of [t1, t2] and therefore of [t −m, t − (m − 1)]. Fix an

arbitrary index 0 ≤ i ≤ N . By the inductive hypothesis, there exist u1 ∈ [t1, t1 + ε
6 ] and u2 ∈ [t2 − ε

6 , t2]
such that the inequalities ∣∣yi−1(uj)

∣∣ ≤ Cm( ε6 , c0)‖yt‖ (j = 1, 2) (2.13)

hold. Note that ε
6 ≤ u2 − u1.

From the mean value theorem applied to yi−1 on the interval [u1, u2] and in view of inequality (2.13)
we obtain that there exists a t∗ ∈ [u1, u2] ⊂ [t1, t2], such that

∣∣ẏi−1(t∗)
∣∣ =

∣∣yi−1(u2)− yi−1(u1)
∣∣

u2 − u1
≤

12Cm( ε6 , c0)

ε
‖yt‖

holds. Noting that t∗ − 1 ∈ J and using hypothesis (H2) and the fact that y is a solution of (2.11) we
infer ∣∣yi(t∗ − 1)

∣∣ ≤ 12Cm( ε6 , c0)

εc0
‖yt‖ =: Cm+1(ε, c0)‖yt‖.

Summarizing the above cases, we obtain that (2.12) holds also for m+ 1 with

Cm+1(ε, c0) := max

{
1, Cm( ε2 , c0),

12Cm( ε6 , c0)

εc0

}
.

This completes the proof.
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Proposition 2.5. Fix n ∈ N0 and let y be a nontrivial solution of (2.11) on an interval I, where
functions ci are continuous and satisfy (H2) on I for all 0 ≤ i ≤ N . Then there exists a constant
k = k(n,N, c0, c1) > 0, such that for all t0 ∈ I, for which t0 − N − n − 3 ∈ I and y0 has at most n
sign-changes on any subinterval of [t0 −N − n− 4, t0 − n− 1] of length 1, the inequality

‖yt0−1‖ ≤ k‖yt0‖

holds.

Proof. Set K := N + n+ 1 and let ε ∈ (0, 1
2K ) and C := CK+2(ε, c0) from Lemma 2.4. Furthermore, for

all 0 ≤ m ≤ n+N + 1 define km = (1 + εc1)K−mC. We claim that the statement holds with k := k0. As
always, all upper indexes are to be understood modulo N + 1.

Assume to the contrary that there exists 0 ≤ i ≤ N and t∗ ∈ [t0−2, t0−1] such that |yi(t∗)| > k0‖yt0‖.
For definiteness assume that yi(t∗) > 0 (the case yi(t∗) < 0 is similar).

Applying Lemma 2.4 we obtain that there exists l0 ∈ [t∗− ε, t∗] ⊂ [t0−3, t0−1] and r0 ∈ [t∗, t∗+ ε] ⊂
[t0 − 2, t0], such that |yi(l0)| ≤ C‖yt0‖ and |yi(r0)| ≤ C‖yt0‖ hold. The mean value theorem implies that
there exist s1,0 ∈ [l0, t

∗] ⊂ [t0 − 3, t0 − 1] and s1,1 ∈ [t∗, r0] ⊂ [t0 − 2, t0], such that inequalities

ẏi(s1,0) >
(k0 − C)‖yt0‖

ε
and ẏi(s1,1) < − (k0 − C)‖yt0‖

ε

hold. Combining this with (2.11) and (H2) we obtain using the notation t1,j = s1,j − 1 (j = 0, 1), that

δiyi+1(t1,0) >
(k0 − C)‖yt0‖

εc1
≥ (k0 − k1)‖yt0‖

εc1
= k1‖yt0‖

and

−δiyi+1(t1,1) >
(k0 − C)‖yt0‖

εc1
≥ (k0 − k1)‖yt0‖

εc1
= k1‖yt0‖

hold (note that δN ∈ {−1, 1} and δi = 1 for all 0 ≤ i ≤ N − 1). This, in particular, implies that yi+1 has
at least one sign-change on the interval [t∗ − 1− ε, t∗ − 1 + ε] ⊆ [t0 − 4, t0 − 1].

We claim that for all 1 ≤ m ≤ K there exists tm,0 < tm,1 < · · · < tm,m, all from the interval
[t∗ −m(1 + ε), t∗ −m(1− ε)], such that

yi+m(tm,j) · (−1)j
i+m−1∏
`=i

δ` > 0, for all 0 ≤ j ≤ m, (2.14)

holds and moreover, inequalities

|yi+m(tm,0)| > km‖yt0‖ and |yi+m(tm,m)| > km‖yt0‖ (2.15)

are fulfilled. This, in particular, implies that function yi+m changes sign at least m times on the interval
[t∗ −m(1 + ε), t∗ −m(1− ε)].

We will prove this claim using mathematical induction. Note that we have just verified it for m = 1.
Now, let us assume that the claim holds for some 1 ≤ m ≤ K − 1 and let us verify properties (2.14)

and (2.15) for m+ 1. Note that by our assumptions and the choice of ε,

t0 − (K + 2) ≤ t∗ −m− (m+ 1)ε ≤ tm,0 − ε < tm,m + ε ≤ t∗ −m+ (m+ 1)ε ≤ t0,

hence Lemma 2.4 can be applied to obtain that there exist lm ∈ [tm,0− ε, tm,0] and rm ∈ [tm,m, tm,m + ε]
such that |yi+m(lm)| ≤ C‖yt0‖ and |yi+m(rm)| ≤ C‖yt0‖. Bearing this in mind, let us apply the mean

value theorem (for the function yi+m
∏i+m−1
`=i δ`, resp. yi+m(−1)m

∏i+m−1
`=i δ` on the interval [lm, tm,0],

resp. [tm,m, rm]) and use assumption (2.14) to obtain that there exist sm+1,0 ∈ [lm, tm,0] and sm+1,m+1 ∈
[tm,m, rm], such that

ẏi+m(sm+1,0) ·
i+m−1∏
`=i

δ` >
(km − C)‖yt0‖

ε
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and

ẏi+m(sm+1,m+1) · (−1)m+1
i+m−1∏
`=i

δ` >
(km − C)‖yt0‖

ε
.

Then (2.11) and (H2) imply that for tm+1,0 := sm+1,0−1 and tm+1,m+1 := sm+1,m+1−1, the estimates

yi+m+1(tm+1,0) ·
i+m∏
`=i

δ` >
(km − C)‖yt0‖

εc1
≥ (km − km+1)‖yt0‖

εc1
= km+1‖yt0‖

and

yi+m+1(tm+1,m+1) · (−1)m+1
i+m∏
`=i

δ` >
(km − C)‖yt0‖

εc1
≥ (km − km+1)‖yt0‖

εc1
= km+1‖yt0‖

hold, that is, we have verified (2.15) for m+ 1, and (2.14) for tm+1,0 and tm+1,m+1.

As for the rest of (2.14), apply again the mean value theorem (for function yi+m ·
∏i+m−1
`=i δ` on each

interval [tm,j−1, tm,j ] with 1 ≤ j ≤ m) to obtain that there exist sm+1,j ∈ (tm,j−1, tm,j), such that

ẏi+m(sm+1,j) · (−1)j
i+m−1∏
`=i

δ` > 0, for all 1 ≤ j ≤ m.

Finally, if we define tm+1,j = sm+1,j − 1 for 0 ≤ j ≤ m, the application of (2.11) yields that

yi+m+1(tm+1,j) · (−1)j
i+m∏
`=i

δ` > 0,

holds for all 1 ≤ j ≤ m. By definition, tm+1,j < tm+1,` clearly holds for all 0 ≤ j < ` ≤ m. From
t∗ −m(1 + ε) ≤ tm,0 < tm,m ≤ t∗ −m(1− ε) one also immediately infers t∗ − (m+ 1)(1 + ε) ≤ tm+1,0 <
tm+1,m+1 ≤ t∗ − (m+ 1)(1− ε). This completes the proof of the claim.

Now let
m1 := min{m ∈ N : m > n and (i+m) is a multiple of (N + 1)}.

Obviously, n + 1 ≤ m1 ≤ K must hold. Then, according to the above claim and bearing in mind
that 2Kε < 1 and t∗ ∈ [t0 − 2, t0 − 1], we obtain that yi+m1 (i.e. y0) changes sign at least m1 times
on the interval [t∗ − m1(1 + ε), t∗ − m1(1 − ε)], which has length at most 1 and is a subinterval of
[t0 − N − n − 4, t0 − n − 1]. This contradicts to the assumption that y0 has at most n sign-changes on
any such interval of length 1.

Corollary 2.6. Fix n ∈ N0 and set K̂ := N+n+4. Let z be a nontrivial solution of (2.9) on an interval
I, where functions ai and bi are continuous and they satisfy (H ′′1 ) on I for all 0 ≤ i ≤ N . Then there

exists a constant k̂ = k̂(n,N, a1, b0, b1) > 0, such that for all t0 ∈ I, for which t0 − K̂ ∈ I and z0 has at
most n sign-changes on any subinterval of [t0 − K̂, t0 − n− 1] of length 1,

‖zt0−1‖ ≤ k̂‖zt0‖

holds.

Proof. Let s0 = t0 − K̂ and apply the change of variables yi(t) := exp
(
−
∫ t
s0
ai(s) ds

)
zi(t) for t ∈ [s0, t0].

Then y : [s0, t0] → RN+1 is a solution of (2.11) on the interval [s0 + 1, t0] with ci : [s0 + 1, t0] → R,

ci(t) = bi(t) exp
(∫ t−1
s0

ai+1(s) ds−
∫ t
s0
ai(s) ds

)
for all 0 ≤ i ≤ N . Moreover, y changes sign exactly where

z does on [s0, t0], thus, in particular, at most n times on each subinterval of [t0−K̂, t0−n−1] of length 1.
The functions ci are obviously continuous and they fulfill hypothesis (H2) with c0 := b0 exp(−2K̂a1)

and c1 := b1 exp(2K̂a1).
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Therefore, by virtue of Proposition 2.5 and (H ′′1 ), we obtain that there exist k > 0 such that the
estimates

‖zt0−1‖ = max
0≤i≤N

s∈[t0−2,t0−1]

{∣∣∣∣exp

(∫ s

s0

ai(u) du

)
yi(s)

∣∣∣∣}
≤ ea1(t0−1−s0)‖yt0−1‖

≤ kea1K̂‖yt0‖

= kea1K̂ max
0≤i≤N

s∈[t0−1,t0]

{∣∣∣∣exp

(
−
∫ s

s0

ai(u) du

)
zi(s)

∣∣∣∣}
≤ ke2a1K̂‖zt0‖

hold, which proves our statement.

It would be desirable to have an estimate on the decay rate similar to the one in Corollary 2.6, but in
the CK norm and for solutions of (2.6). A particular reason for this is that we will need such an estimate
for the proof of Proposition 3.9, which is essential for the proof of our other main result, Theorem 3.2.
To achieve this, we need first the following technical lemma that gives a bound on the growth rate in
forward time.

Lemma 2.7. Let x be a solution of equation (2.6) on the interval [t0, t1] and assume that there exist
positive constants α1 and β1, such that |αi(t)| ≤ α1 and |βi(t)| ≤ β1 hold for all t ∈ [t0, t1] and for all
0 ≤ i ≤ N . Then the inequality

‖xt‖CK ≤ exp
(
α1(t− t0) + β1(t− t0)e2α1(t−t0)

)
‖xt0‖CK

holds for all t ∈ [t0, t1].

Proof. From equation (2.6) we obtain

d

dt

(
e
−

∫ t
t0
αi(s) ds

xi(t)
)

= e
−

∫ t
t0
αi(s) ds

βi(t)xi+1(t),

from which we deduce

xi(t) = e
∫ t
t0
αi(s) ds

(
xi(t0) +

∫ t

t0

e
−

∫ u
t0
αi(s) ds

βi(u)xi+1(u) du

)
.

This combined with the triangle inequality and the assumptions on αi and βi implies that the in-
equalities

|xi(t)| ≤ eα1(t−t0)|xi(t0)|+ eα1(t−t0)
∫ t

t0

eα1(u−t0)β1|xi+1(u)| du

≤ eα1(t−t0) ‖xt0‖CK + eα1(t−t0)
∫ t

t0

eα1(u−t0)β1 ‖xu‖CK du

hold for all t ∈ [t0, t1].
Using the definition of the norm ‖·‖CK , one easily obtains that

‖xt‖CK ≤ e
α1(t−t0) ‖xt0‖CK +

∫ t

t0

eα1(t+u−2t0)β1 ‖xu‖CK du

holds for all t ∈ [t0, t1]. Thus by a Grönwall-type inequality (see e.g. [35, Theorem 1.4.2]) we deduce

‖xt‖CK ≤ e
α1(t−t0) ‖xt0‖CK exp

(
eα1(t−2t0)β1

∫ t

t0

eα1u du

)
≤ ‖xt0‖CK exp

(
α1(t− t0) + β1(t− t0)e2α1(t−t0)

)
.
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Proposition 2.8. Fix n ∈ N0 and let V denote either V + or V − (determined by the feedback). Let x be
a nontrivial solution of (2.6) on an interval I. Assume that the functions αi and βi are continuous and
satisfy hypothesis (H ′1) on I. Suppose further that V (xt) ≤ n for all t ∈ I.

Then there exists a constant k1 = k1(n,N, α1, β0, β1) > 0, such that for all t0 ∈ I, for which I ⊇ I1 :=
[t0 − 3− n+2

N+1 , t0 + 1],
‖xt0−1‖CK ≤ k1 ‖xt0‖CK

holds.

Proof. Let zi(t) := xi
(
t0 + t+i

N+1

)
. Then, on the one hand, z is a solution of (2.9)–(2.10) on the interval

including [−3(N+1)−n−2, 0]. Moreover, the functions ai and bi fulfill hypothesis (H ′′1 ) with a1 := α1

N+1 ,

b0 := β0

N+1 and b1 := β1

N+1 .
These show that the inequalities

‖xt0−1‖CK = max
s∈[t0−2,t0−1]

1≤i≤N

{
|x0(s)|, |xi(t0 − 1)|

}
= max
s∈[−2(N+1),−(N+1)]

1≤i≤N

{
|z0(s)|, |zi(−(N + 1 + i))|

}
≤ max

0≤i≤N
‖zt1−i‖,

hold, where t1 := −(N + 1).
On the other hand, by our assumptions and the definition of V , x0 has at most n sign-changes on

any subinterval of I1 of length 1. Consequently z0 has at most n sign-changes on any subinterval of
[−3(N + 1)− n− 2, 0] of length N + 1. In particular this holds for subintervals of length 1, therefore we

can apply Corollary 2.6 to obtain the inequalities ‖zt1−i‖ ≤ k̂i‖zt1‖ for 0 ≤ i ≤ N . Assuming – without

loss of generality – that k̂ ≥ 1 we deduce

‖xt0−1‖CK ≤ max
0≤i≤N

‖zt1−i‖ ≤ k̂N ‖zt1‖ ≤ k̂2N+1‖zt1+N+1‖ = k̂2N+1‖z0‖.

This in turn yields that there exists some s ∈ [−1, 0] and 0 ≤ j ≤ N , such that

‖xt0−1‖CK ≤ k̂
2N+1|zj(s)| = k̂2N+1

∣∣∣xj(t0 + s+j
N+1

)∣∣∣ ≤ k̂2N+1
(
‖xt0‖CK + ‖xr‖CK

)
,

where r = t0 + s+j
N+1 . Since r ∈ [t0, t0 + 1], Lemma 2.7 implies that

‖xr‖CK ≤ exp
(
α1 + β1e

2α1

)
‖xt0‖CK ,

which shows that the statement holds with k1 = k̂2N+1
(
1 + exp

(
α1 + β1e

2α1
))

.

Now we are in position to prove the main theorem of this subsection.

Proof of Theorem 2.2. Assume to the contrary that x is a superexponential solution of (2.3) on an
interval [t0,∞). In particular, there exists some t2 ≥ t1 such that xi(t) ≤ M for all t ≥ t2 − 1 and
0 ≤ i ≤ N , where M is from hypothesis (H1).

As already shown in Section 2.1, x is also a solution of (2.6)–(2.8) on [t2,∞), and the functions αi

and βi satisfy (H ′1) on this interval.
Proposition 2.1 yields that V (xt) ≤ V (xt1) holds for all t ∈ [t2,∞). Now setting t3 := t2 + 2 + n+2

N+1 ,
we obtain by Proposition 2.8 that there exists a constant k1 such that

km1 ‖xt3+m‖CK ≥ ‖xt3‖CK

holds for all m ∈ N. This clearly contradicts to the assumption that x is superexponential.
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2.3. No superexponential solutions on the global attractor

Recall that a unique forward solution to (2.3) with initial condition xt0 = ϕ ∈ CK exists on a maximal
interval (t0, t

∗) and that t∗ <∞ can only occur if ‖xt‖CK →∞, as t→ t∗.
For readers that are not familiar with nonautonomous dynamical systems, we recall below some basic

notions. For a general overview of the topic we refer the interested reader to [4].
Let us assume that t∗ =∞ for all maximal solutions – this is the case, if e.g. the functions f i from (2.3)

are bounded. Then (2.3) induces a process S(·, ·) on CK, i.e. a family of continuous maps {S(t, s) : t ≥ s}
from CK to itself with the properties

• S(t, t) = id for all t ∈ R,

• S(t, s) = S(t, r)S(r, s) for all t ≥ r ≥ s,

• (t, s, ϕ) 7→ S(t, s)ϕ is continuous, t ≥ s, ϕ ∈ CK,

• S(t, t0)ϕ = xt, where xt is the unique solution of (2.3) with initial condition xt0 = ϕ.

We say that the compact family of sets {A(t)}t∈R ⊂ CK is a global pullback attractor of S, if

• A(t) is compact for all t ∈ R,

• A(·) is invariant under S in the following sense: S(t, s)A(s) = A(t) holds for all t ≥ s, and

• A(·) pullback attracts all bounded subsets B ⊂ CK, i.e.

lim
s→−∞

dist(S(t, s)B,A(t)) = 0.

Finally, we call a family of bounded sets {B(t)}t∈R backwards-bounded, if
⋃
s≤tB(s) is bounded for each

t ∈ R.
Now we are in position to state the main result of this subsection, which is a corollary of Theorem 2.2.

Theorem 2.9. If (2.3) possesses a backwards-bounded global pullback attractor (resp. a global attractor
in the autonomous case), then there are no superexponential solutions on that.

Proof of Theorem 2.9. Recall that a backwards-bounded global pullback attractor (resp. the global at-
tractor in the autonomous case) is uniquely defined and consists of the segments xt of all backwards-
bounded (resp. bounded) entire solutions x [4, Theorem 1.17], (resp. [38, Lemma 2.18]). Then Corol-
lary 4.6 of [29] yields that V (xt) <∞ holds for all t ∈ R, provided x is a nontrivial backwards-bounded
entire solution, and consequently this holds if x is a solution from the attractor. Then Theorem 2.2
implies our statement.

Remark 2.10. We note that in case the functions αi and βi in (2.6) are analytic, then the main theorem
of Cooke and Lunel [8] (see also (3.9)) would guarantee that there are no superexponential solutions at
all (i.e. even the additional assumption on V could be omitted). In general, one cannot expect analyticity
of those functions, moreover, Cooke and Derfel [10, 9] also illustrated by means of counterexamples that
the assumption on analyticity in [8] is not merely a technicality.

Nevertheless, in the autonomous case, if the functions f i are analytic, then Nussbaum’s result [33,
Theorem 1] guarantees that all bounded solutions of (2.3) are analytic. The global attractor – provided
it exists – coincides with the set of ϕ ∈ CK, such that there is a bounded entire solution through ϕ [38,
Lemma 2.18], thus solutions from the attractor are analytic. Now, if we take an arbitrary solution from
the attractor, and consider the conjugated equation (2.6), then the coefficient functions αi and βi are
necessarily analytic, thus the result from [8] can be applied in this case to conclude that the solution
cannot be superexponential.

Example 2.11. It is not hard to give sufficient conditions for the existence of a backwards-bounded
global pullback attractor (resp. of the global attractor in the autonomous case).

Assume for example that there exists R,L and ε positive numbers, such that conditions

f i(u, v, t) ≤ −ε if u ≥ R, (2.16)

f i(u, v, t) ≥ ε if u ≤ −R, (2.17)
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and
|f i(u, v, t)| ≤ L for all (u, v, t) ∈ [−R,R]2 × R (2.18)

are fulfilled for all 0 ≤ i ≤ N . Then it is easy to see that solutions exist globally in forward time, and
that for every bounded B ∈ CK there exist r = r(B), such that S(t, s)B ⊂ BR,L for all s ≤ t− r, where

BR,L := {ϕ ∈ CK : ‖ϕ‖ ≤ R and ϕ|[−1,0] is L-Lipschitz}.

Thus BR,L pullback attracts all bounded sets from CK. On the other hand, by the Arzelà–Ascoli theorem,
this set is compact, and consequently (see e.g. [4, Theorem 2.12]) a uniquely defined global pullback
attractor A(·) exists, moreover, A(t) ⊆ BR,L for all t ∈ R, so it is uniformly bounded, thus in particular,
backwards-bounded.

We note that the above conditions (2.16)–(2.18) could be relaxed to obtain assumptions similar to
that in Example 3.1, but here our goal was to give some criteria from which the existence of a backwards-
bounded global pullback attractor can be seen very easily. The interested reader may also find sufficient
criteria for existence and (backwards-)boundedness of the global pullback attractor in [4], especially in
Section 10.2.

Finally, let us give a more concrete class of feedback functions, for which (H0) and (H1), as well as
(2.16)–(2.18) hold. For all 0 ≤ i ≤ N let hi1, h

i
2 : R → R be uniformly bounded, and uniformly positive,

continuous functions. Furthermore, assume that for each i, f̃ i is a bounded C1-function with positive
derivative at 0, and assume that vf̃ i(v) > 0 for all v ∈ R\{0} and 0 ≤ i ≤ N (take e.g. f̃ i(v) = tanh(v)).

Then the feedback functions

f i(u, v, t) = −hi1(t)u+ δihi2(t)f̃ i(v), 0 ≤ i ≤ N

clearly fulfill hypotheses (H0) and (H1), as well as conditions (2.16)–(2.18), where δN = ±1 and δi = 1
for all 0 ≤ i ≤ N − 1.

3. Morse decomposition of the global attractor

In this section we shall focus on the autonomous equation

ẋi(t) = f i(xi(t), xi+1(t)), 0 ≤ i ≤ N − 1

ẋN (t) = fN (xN (t), x0(t− 1)),
(3.1)

where the functions f i are C1-smooth on R2, and they fulfill the feedback assumptions:

(Ha
0 ) δivf i(0, v) > 0 holds for all v 6= 0 and 0 ≤ i ≤ N with δN ∈ {−1, 1} and δi = 1 for all 0 ≤ i ≤ N−1;

(Ha
1 ) D2f

i(0, 0) 6= 0 for all 0 ≤ i ≤ N .

As already noted in Remark 2.3, since C1-smoothness is assumed, (H0)–(H1) are equivalent to (Ha
0 )–(Ha

1 )
in the autonomous case, and in particular Theorems 2.2 and 2.9 can be applied.

Furthermore, from now on we shall assume

(H3) solutions to (3.1) exist globally in forward time, and (3.1) possesses a global attractor.

Example 3.1. Suppose that there exists R > 0, such that

f i(u, v) < 0 if u ≥ R and |v| ≤ u (3.2)

and

f i(u, v) > 0 if u ≤ −R and |v| ≤ |u| (3.3)

hold for all 0 ≤ i ≤ N . Then one can easily prove – in an analogous way as it was done for the scalar
case (N = 0) in [37, Corollary 3.2] – that solutions to (3.1) exist globally in forward time and a unique,
connected global attractor exists.

12



The main result of this section establishes that under the above hypotheses, the global attractor of
(3.1) possesses a Morse decomposition, that is, a finite ordered collection

M1 ≺M2 ≺ · · · ≺ Mm

of pairwise disjoint, compact and invariant Morse sets M1, . . . ,Mm ⊆ A such that for all ϕ ∈ A and
any bounded entire solution x with x0 = ϕ, there exist i ≥ j with

(m1) α(x) ⊆Mi and ω(ϕ) ⊆Mj ,

(m2) i = j implies ϕ ∈Mi (thus, xt ∈Mi for all t ∈ R).

Note that – similarly as in [28] and [37] – in the lack of backward uniqueness, we have to deal with α-limit
sets of concrete entire solutions (instead of that of an element in the state space). This is reflected in our
notation.

In order to state the main result of this section we need to study the linearization of (3.1), namely

ẋi(t) = µixi(t) + γixi+1(t), 0 ≤ i ≤ N − 1

ẋN (t) = µNxN (t) + γNx0(t− 1)),
(3.4)

where µi = D1f
i(0, 0), and γi = D2f

i(0, 0). Then δNγN > 0 and γi ∈ (0,∞) for all 0 ≤ i ≤ N − 1 hold.
The eigenvalues of (3.4) are exactly those numbers λ ∈ C that solve the characteristic equation

N∏
i=0

(λ− µi)− e−λ
N∏
i=0

γi = 0. (3.5)

Let us denote by M∗ the number of eigenvalues (counting multiplicities) of (3.5) with strictly positive
real part. Note that, according to the last statement of Proposition 3.6, M∗ is always a finite number.
Moreover, let

N∗+ :=

{
M∗ + 1, if the origin is nonhyperbolic and M∗ is odd,

M∗, otherwise.

N∗− :=

{
M∗ + 1, if the origin is nonhyperbolic and M∗ is even,

M∗, otherwise.

Now we are in position to state the main result of the section, which is a generalization of the main
result of [37] and of [28, Theorem B].

Theorem 3.2. If (3.1) has a global attractor A and the assumptions (Ha
0 ) and (Ha

1 ) hold, then some
finite collection of the following sets forms a Morse decomposition of A:

Mn =
{
ϕ ∈ A \ {0} : (3.1) has a bounded entire solution x through ϕ

with V (xt) ≡ n on R and 0 /∈ α(x) ∪ ω(ϕ)
}
, for n ∈ N0 \ {N∗},

MN∗ =
{
ϕ ∈ A \ {0} : (3.1) has a bounded entire solution x through ϕ with V (xt) ≡ N∗ on R

}
∪ {0},

where V and N∗ denote V ± and N∗±, respectively, and “±” indicates the sign of δN .

Before we begin with the proof, it is appropriate to add some comments to the theorem.

Remark 3.3. Notice that although the definition of N∗ formally differs from the ones given in [28]
and [37], our definition, under their assumptions, reduces to those in the scalar case. This is because
in that case, even more information is known about the spectrum. In particular, under the assumption
|D1f(0, 0)| < |D2f(0, 0)| one has that M∗ is an odd (resp. even) number in case of positive (resp. negative)
feedback, therefore the term “and M∗ is odd” can be omitted from the definition of N∗+, and likewise in
N∗−.
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Remark 3.4. We stress that Theorem 3.2 itself does not exclude the possibility that the decomposition
is trivial, i.e. MN∗ = A. This is certainly the case if the trivial solution is globally attractive. In turn,
it is an interesting and highly nontrivial question under what conditions the Morse decomposition is
nontrivial.

In the scalar case (N = 0), much is known: Mallet-Paret already showed in Theorem D of [28] that
in case of negative feedback, the obtained Morse decomposition is nontrivial, provided N∗ > 1. More
precisely, he proved the existence of periodic solutions in the Morse sets having an odd index, that is
smaller than N∗. Among others, similar results can be found in the monograph of Krisztin, Walther and
Wu for the positive feedback case too, under some additional assumptions on the right-hand side.

For the general N ≥ 1 case, sufficient conditions for the existence of certain types of periodic solutions
are obtained in [5, 6, 14, 22, 41] and in the recent work [23]. These results may provide sufficient conditions
for a nontrivial Morse decomposition.

The rest of the paper is devoted to the proof of Theorem 3.2, which follows very closely the argument
presented in [37] for the scalar case (N = 0) and positive feedback. That proof is based on the ideas of
[28] but exploiting some results from [29] and [30]. Since the latter results all apply to equation (3.1),
essentially the only thing that has been missing for the proof of Theorem 3.2 is the absence of small
solutions on the attractor, more precisely, the estimate on the decay from Proposition 2.8.

The proof is carried out in a sequence of lemmas and auxiliary statements, many of which are straight-
forward modifications of the corresponding ones from [37]. In such cases, we shall leave the proofs for the
reader, and only a reference for the analogous result will be given. Nevertheless, some steps may require
less obvious modifications in the arguments. These will be discussed in detail.

The proof extensively uses some results from [29] and [30], which we will recall in the following
subsection for the reader’s convenience.

3.1. Preliminaries

In the proof we will benefit from the properties of the discrete Lyapunov function V ±. We summarize
these in Proposition 3.5.

Let
C1K := {ϕ ∈ CK : the restriction ϕ|[−1,0] is continuously differentiable},

and observe that for a solution x on [t0,∞) one has that xt ∈ C1K for all t ∈ [t0,∞). We furnish this space
with the norm ‖ · ‖C1K , where

‖ϕ‖C1K := ‖ϕ‖CK + sup
θ∈[−1,0]

|ϕ̇(θ)|.

Furthermore, let us define the following subsets of C1K:

S0 := {ϕ ∈ C1K : if ϕ(0) = 0, then δ0ϕ̇(0)ϕ(1) > 0},
S−1 := {ϕ ∈ C1K : if ϕ(−1) = 0, then δNϕ(N)ϕ̇(−1) < 0},
S∗ := {ϕ ∈ C1K : if ϕ(θ) = 0, for some θ ∈ [−1, 0], then ϕ̇(θ) 6= 0},
Si := {ϕ ∈ C1K : if ϕ(i) = 0 then δiϕ(i− 1)ϕ(i+ 1) < 0}

for 1 ≤ i ≤ N with ϕ(N + 1) := ϕ(−1) and set

S :=

(
N⋂

i=−1
Si

)
∩ S∗.

The proof of the proposition below can be found in [29] (see Theorems 4.3 and 4.4).

Proposition 3.5. The following statements hold for V = V ±.

(i) The function V is lower semicontinuous, i.e. for every ϕ ∈ CK \{0} and for every sequence (ϕn)n∈N
in CK \ {0} with ϕn → ϕ (as n→∞),

V (ϕ) ≤ lim inf
n→∞

V (ϕn).
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(ii) The function V is finite and continuous, hence locally constant, on the open dense subset S ⊂ C1K\{0}
in the C1K topology; that is, if ϕ ∈ S, then there exists ε > 0 such that

V (ψ) = V (ϕ) <∞ if ‖ψ − ϕ‖C1K < ε.

(iii) Suppose that x is a solution of equation (2.3) on an interval I, and that for some t ∈ I also t−4 ∈ I
and V (xt) = V (xt−4) <∞ hold. Then xt ∈ S.

Note that assertion (iii) is stated for the general equation (2.3), and as such, it applies to solutions of
(2.9), (2.11) or (3.1), as well.

It will be crucial to have information on the distribution of the eigenvalues of the linearized equation
(3.4) and about the oscillatory properties of the sums of eigensolutions. These are summarized in the
next two propositions.

Let
P := {Reλ : λ ∈ C is a root of (3.5)}.

Furthermore, for some σ ∈ P , denote by Gσ ⊂ CK the realified generalized eigenspace of the generator
of the semigroup given by the linear equation (3.4), that is associated with the spectral set

Sσ := {α ∈ C : α is an eigenvalue of (3.4), such that Reα = σ}. (3.6)

Proposition 3.6 ([30, Corollary 3.3, Lemma 7.4]). If δN = −1, then the real parts σ = Reλ of the roots
of the characteristic equation (3.5) can be ordered (with multiplicity)

σ0 ≥ σ1 > σ2 ≥ σ3 > σ4 ≥ · · · , (3.7)

and one has

V −(xit) =

{
i+ 1, if i is even,

i, if i is odd,

for all t ∈ R and for any solution xi from Gσi \ {0}.
If δN = 1, then one has

σ0 > σ1 ≥ σ2 > σ3 ≥ σ4 > · · · , (3.8)

and

V +(xit) =

{
i, if i is even,

i+ 1, if i is odd,

holds for all t ∈ R and for any solution xi from Gσi \ {0}.
In both cases (δN = ±1), dimGσ ≤ 2 for all σ ∈ P , moreover, there are only finitely many roots of

(3.5) to the right of any vertical line in the complex plane.

Motivated by the above statements, we will sometimes take the liberty to omit the subscript t and
simply write V ±(x) in case t 7→ V ±(xt) is constant on R.

Proposition 3.7 ([30, Theorem 3.1]). Let V denote either V + or V − (determined by the sign of δN )
and assume that σi1 < σi2 < · · · < σin belong to P for some n ∈ N. Suppose further that each xij (·) is a

solution of (3.4) such that x
ij
t ∈ Gσij for all t ∈ R, and let

x(t) =

n∑
j=1

xij (t).

If neither xi1 , nor xin are the zero solution, then

lim
t→−∞

V (xt) = V (xi1), lim
t→∞

V (xt) = V (xin)

hold.
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3.2. Proof of Theorem 3.2

Throughout the proof we will use the notation V to express that a statement holds both with V +, in
case of positive feedback, and with V −, for negative feedback.

The following proposition – which is an analog of [37, Lemma 3.8] – suggests that among the level
sets of V , the set V −1(N∗) has a distinguished role.

Proposition 3.8.

(i) If x is a nontrivial bounded solution of (3.4) on (−∞, 0], then V (xt) ≤ N∗ for all t ≤ 0.

(ii) If x is a nontrivial bounded solution of (3.4) on [0,∞), then V (xt) ≥ N∗ for all t ≥ 0.

Proof. Let us only consider the negative feedback case, i.e. δN = −1 (the proof for the positive feedback
case is completely analogous).

First note that (3.4) has no superexponential solutions. Indeed, this follows directly from the result
of Cooke and Verduyn Lunel [8], which states that the equation

ẋ(t) = A(t)x(t) +B(t)x(t− 1), (3.9)

with A(·) and B(·) bounded, real analytic (N + 1)× (N + 1)-matrix valued functions, does not have any
superexponential solutions, provided |detB(t)| > 0 for all t ∈ R. Should x be a superexponential solution
of equation (3.4), then z with zi(t) = xi

(
t+i
N+1

)
for 0 ≤ i ≤ N would be a superexponential solution of

equation

żi(t) =
µi

N + 1
zi(t) +

γi

N + 1
zi+1(t− 1), 0 ≤ i ≤ N,

which is in the form (3.9), where matrices A and B are constant, therefore trivially bounded and analytic,

and |detB| =
∣∣(N + 1)−N−1

∏N
i=0 γ

i
∣∣, which is nonzero, thanks to assumption (Ha

1 ) and γi = D2f
i(0, 0).

Therefore the system of eigenvectors and generalized eigenvectors of the generator of the semigroup
given by (3.4) is complete (see Theorem 4.3 in [11]).

Note that in view of the last statement of Proposition 3.6, the definition of M∗, and (3.7), one has

σi > 0 for 0 ≤ i ≤M∗ − 1 and σi ≤ 0 for i ≥M∗. (3.10)

Proof of (i). First consider the hyperbolic case. Hyperbolicity combined with (3.7) and (3.10) imply that
σi > 0 for all 0 ≤ i ≤M∗ − 1, and σi < 0 for all i ≥M∗. Hence, thanks to completeness, any nontrivial
solution x of (3.4) that is bounded on (−∞, 0] is of the form

x(t) =

j∑
i=0

xi(t), (3.11)

where xit ∈ Gσi for all t ∈ (−∞, 0] and 0 ≤ i ≤ j with some j ∈ N0, j ≤ M∗ − 1 and xj 6≡ 0. Then
Propositions 3.6 and 3.7 imply that

lim
t→−∞

V (xt) = V (xj) ≤ j + 1 ≤M∗ = N∗.

Finally, from Proposition 2.1 it follows that V (xt) ≤ N∗ for all t ∈ (−∞, 0].
If the origin is nonhyperbolic and M∗ is odd, then it follows from (3.7) and (3.10) that σi < σM

∗
= 0

holds for all i ≥M∗+ 1. Thus a nontrivial solution x of (3.4) that is bounded on (−∞, 0] can be written
in the form (3.11) with some j ∈ N0, j ≤ M∗ such that xj 6≡ 0. This implies that limt→−∞ V (xt) =
V (xj) ≤M∗ = N∗ holds, and Proposition 2.1 proves the assertion.

If the origin is nonhyperbolic and M∗ is even, then it follows from (3.10) that σM
∗

= 0 and N∗ =
M∗ + 1. We infer from (3.7) that σi < σM

∗+1 ≤ 0 holds for all i ≥ M∗ + 2. Therefore, in view of
completeness, a nontrivial solution x of (3.4) that is bounded on (−∞, 0] can be written in the form
(3.11) with some j ∈ N0, j ≤M∗ + 1 such that xj 6≡ 0. As M∗ + 1 is now odd, Propositions 3.6 and 3.7
imply that limt→−∞ V (xt) = V (xj) ≤ M∗ + 1 = N∗ holds, and Proposition 2.1 concludes the proof of
statement (i).
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Proof of (ii). Thanks to completeness and by virtue of (3.10), a nontrivial solution x of (3.4), that is
bounded on [0,∞), can be written in the form

x(t) =

∞∑
i=j

xi(t), (3.12)

where xit ∈ Gσi for all t ∈ [0,∞) and i ≥ j with some j ≥ M∗ and xj 6≡ 0. Since dimGσj ≤ 2, the set
Sσj is either a complex pair of eigenvalues σj ± ι · ωj (ωj > 0), or solely the real eigenvalue σj with a
multiplicity of at most 2.

Thus xj takes either the form

(xj)`(t) = γ`eσ
jt cos(ωjt+ ν`), for all 0 ≤ ` ≤ N (3.13)

for some γ` ∈ R, and ν` ∈ [0, 2π) (where (xj)` denotes the `-th component of the vector function xj), or

(xj)`(t) = p`(t)eσ
jt,

where p`(t) is a linear polynomial in t.
In the former case, x has the asymptotic expansion (see Theorem 5.4 of [11, Ch. 1])

x`(t) = γ`eσ
jt
(
cos(ωjt+ ν`) + o(1)

)
for all 0 ≤ ` ≤ N. (3.14)

Recall that by Proposition 3.6, V (xjt ) is constant on [0,∞). Now, fix a t0 > 0 and let θ0 < · · · < θk
be from K such that they realize the sc(xjt0 ,K) number of sign-changes, i.e. xjt0(θi−1)xjt0(θi) < 0 for all

1 ≤ i ≤ k. Obviously, k can only be V (xjt0) or V (xjt0)− 1 and the latter may only happen if k is even.
Using periodicity of the cosine function and expansion (3.14) we obtain that for all 0 ≤ i ≤ k and

n ∈ N large enough,

sgnxtn(θi) = sgnxjt0(θi), with tn = t0 +
2nπ

ωj
,

holds, and hence, sc(xtn) ≥ sc(xjtn) for large enough n ∈ N. This readily implies that

lim sup
t→∞

V (xt) ≥ V (xj) ≥

{
M∗ + 1, if M∗ is even,

M∗, if M∗ is odd

}
≥ N∗.

Thus, by monotonicity of V (Proposition 2.1), we obtain that V (xt) ≥ N∗ holds for all t ≥ 0.
An analogous – and even simpler – argument can be applied to prove the statement if σj ∈ R. This

completes the proof of (ii).

The next proposition is one of the key tools for the proof of Theorem 3.2, and this is the point where
the findings of Section 2 (in particular, the estimate in Proposition 2.8) are essential.

Proposition 3.9. There exists an open neighborhood U of 0 in A, such that for all nontrivial entire
solutions x : R→ RN+1 of equation (3.1) the following statements hold.

(i) If xt ∈ U for all t ≤ 0, then V (xt) ≤ N∗ for all t ∈ R.

(ii) If xt ∈ U for all t ≥ 0, then V (xt) ≥ N∗ for all t ∈ R.

Proof. The argument of the proof relies on Propositions 2.1, 2.8, 3.5 and 3.8, and it is completely
analogous to that of [37, Lemma 3.9].

Obviously, for the existence of the Morse decomposition, we must prove that only finitely many of
the Morse sets are nonempty. The next theorem states somewhat more.

Theorem 3.10. The Lyapunov function V is bounded on A \ {0}.

As in [37], the proof of this requires the following three lemmas. Although the proofs of these are
quite lengthy and technical, they are straightforward modifications of the ones from [37], and therefore
they are omitted here.
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Lemma 3.11. Let (ϕn)n∈N be a sequence in A \ {0} and let ϕ ∈ A such that ϕn → ϕ and V (ϕn)→∞
as n→∞. Then there exist a bounded entire solution x of equation (3.1) and a number σ ∈ [−1, 0], such
that x0 = ϕ and xi(σ − k) = 0 for all 0 ≤ i ≤ N and all k ∈ N0.

Lemma 3.12. If x is a bounded entire solution of equation (3.1) such that xi(−k) = 0 for all k ∈ N0

and all 0 ≤ i ≤ N , then xi(t) = 0 for all t ∈ R and 0 ≤ i ≤ N .

The following lemma is a straightforward corollary of the previous two.

Lemma 3.13. Let (ϕn)n∈N be a sequence in A \ {0} and ϕ ∈ A such that ϕn → ϕ and V (ϕn)→∞ as
n→∞. Then ϕ = 0.

The proof of Theorem 3.10 is analogous to that of [37, Theorem 3.4], however, for the reader’s
convenience, we include a detailed proof.

Proof of Theorem 3.10. Arguing by contradiction, assume that there exists a sequence (ϕn)n∈N in A\{0},
such that V (ϕn) → ∞, as n → ∞. By compactness, we may assume that ϕn → ϕ for some ϕ ∈ A, as
n→∞. By virtue of Lemma 3.13, ϕ = 0 holds.

Since V (ϕn) → ∞ and ϕn → 0, there exists some n0 ∈ N, such that ϕn ∈ U and V (ϕn) > N∗ hold
for all n ≥ n0, where U ⊆ A is given by Proposition 3.9. Now, for any k ≥ n0, there exists a bounded
entire solution xk of (3.1) with xk0 = ϕk and xkt ∈ A for all t ∈ R.

By Proposition 2.1 we obtain that V (xkt ) > N∗ for all t ≤ 0, thus Proposition 3.9 implies that there
exists t ≤ 0 such that xkt /∈ U . Therefore there must exist tk ≤ 0 such that ψk := xktk ∈ ∂U . As (ψk)k≥n0

is a sequence in the compact set A∩ ∂U , we may assume (by passing to a subsequence) that ψk → ψ for
some ψ ∈ A ∩ ∂U .

Using monotonicity of V one has

V (ψk) = V (xktk) ≥ V (xk0) = V (ϕk)→∞ as k →∞,

which, in view of Lemma 3.13, implies ψ = 0, a contradiction to ψ ∈ ∂U and 0 /∈ ∂U .

Before we can give the proof of the main result of the section, some further lemmas are necessary.

Lemma 3.14. Let (ϕn)n∈N be a sequence in A and ϕ ∈ A such that ϕn → ϕ as n→∞. Then (ϕn)n∈N
has a subsequence converging to ϕ in the C1K norm.

Proof. The proof is completely analogous to [37, Lemma 4.3] and therefore omitted here.

Lemma 3.15. Let ϕ ∈ A\{0} and x denote a bounded entire solution of equation (3.1) for which x0 = ϕ.
Then the following statements hold.

(i) If limt→∞ V (xt) = n for some n ∈ N0, then V (ψ) = n for all ψ ∈ ω(ϕ) \ {0}.

(ii) If limt→−∞ V (xt) = n for some n ∈ N0, then V (ψ) = n for all ψ ∈ α(x) \ {0}.

Proof. The proof is analogous to that of [37, Lemma 4.4] and it is based on Propositions 2.1 and 3.5,
Theorem 3.10, and Lemma 3.15.

Lemma 3.16. Let ϕ ∈ A\{0} and x denote a bounded entire solution of equation (3.1) for which x0 = ϕ.
Then the following statements hold.

(i) If limt→∞ V (xt) 6= N∗, then either ω(ϕ) = 0 or 0 /∈ ω(ϕ).

(ii) If limt→−∞ V (xt) 6= N∗, then either α(x) = 0 or 0 /∈ α(x).

Proof. The proof is analogous to that of [37, Lemma 4.5] and it is based on Propositions 2.1, 2.8 and 3.9
and Lemmas 2.7 and 3.14.

The next lemma is an analogue of [37, Lemma 4.6] and it follows readily from the previous two
lemmas. As we will see, this auxiliary result will be used to establish the ordering between the Morse
sets.
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Lemma 3.17. Let n ∈ N0 \ {N∗}, ϕ ∈ A \ {0} and x denote a bounded entire solution of equation (3.1)
for which x0 = ϕ. Then the following statements hold.

(i) If limt→∞ V (xt) = n, then either ω(ϕ) = {0} or ω(ϕ) ⊆Mn.

(ii) If limt→−∞ V (xt) = n, then either α(x) = {0} or α(x) ⊆Mn.

The next lemma is used for establishing that the Morse sets are compact.

Lemma 3.18. For every n ∈ N0 \ {N∗}, there exists an open neighborhood Ũ in A of the origin, such
that Mn ∩ Ũ = ∅.

Proof. The proof relies on Propositions 2.1, 3.5 and 3.9 and Lemma 3.15, and the argument given in [37,
Lemma 4.7] applies almost verbatim for our case as well.

Lemma 3.19. The set Mn is compact for each n ∈ N0.

Proof. The proof of [37, Lemma 4.8] applies almost verbatim for our case, in which one has to use
Lemma 3.18, Proposition 3.5, and Theorem 3.10.

After all these preparations, we are now in position to actually prove Theorem 3.2.

Proof of Theorem 3.2. The argument follows the lines of the proof presented in [15, Theorem 4.1] for
an analogous discrete time result.

By definition, the sets Mn are pairwise disjoint and invariant, and, according to Lemma 3.19, they
are compact. By virtue of Theorem 3.10, only finitely many Morse sets can be nonempty, hence it is only
left to prove that the Morse properties (m1)–(m2) hold.

Note that thanks to the backward uniqueness of the zero solution, (m1)–(m2) hold trivially for ϕ = 0.
So consider an arbitrary ϕ ∈ A \ {0}, and let x be a bounded entire solution of (3.1) for which x0 = ϕ
holds. Furthermore, define

i := lim
t→−∞

V (xt) and j := lim
t→∞

V (xt).

From Proposition 2.1 one obtains that i ≥ j.
First, observe that if j = N∗, then ω(ϕ) ⊆ MN∗ . To see this, choose an arbitrary ψ ∈ ω(ϕ). If

ψ = 0, then ψ ∈ MN∗ holds by definition, so we may assume that ψ 6= 0. By Lemma 3.15 we infer that
V (ψ) = N∗. Moreover, by the invariance of ω(ϕ) \ {0}, there exists an entire solution x̃ in ω(ϕ) \ {0},
such that x̃0 = ψ. Hence, by virtue of Lemma 3.15, V (x̃t) = N∗ holds for all t ∈ R, and, in particular,
ψ ∈MN∗ . A similar argument can be applied to prove that i = N∗ implies that α(x) ⊆MN∗ holds.

We will distinguish four cases in terms of the values of i and j.

Case 1. If i = j = N∗, then α(x) ∪ ω(ϕ) ⊆ MN∗ holds by the above observation. Moreover, from the
monotonicity of V it follows that V (xt) ≡ N∗ on R, thus xt ∈ MN∗ for all t ∈ R, and both (m1) and
(m2) hold.

Case 2. If i > j = N∗, then ω(ϕ) ⊆ MN∗ holds. On the other hand, α(x) 6= {0} holds. Otherwise
Proposition 3.9 would imply V (xt) ≤ N∗ for t ∈ R, and thus i ≤ N∗ = j, which is a contradiction. Hence
Lemma 3.17 yields α(x) ⊆ Mi, and property (m1) is fulfilled. Note that (m2) holds automatically, as
the two Morse sets in question, i.e. MN∗ and Mi, are different.

Case 3. A similar argument applies in the case when i = N∗ > j.

Case 4. If i 6= N∗ 6= j, then Lemma 3.17 yields that either ω(ϕ) = {0} or ω(ϕ) ⊆ Mj . Similarly, either
α(x) = {0} or α(x) ⊆Mi holds. Note that ω(ϕ) and α(x) cannot be both {0} in this case, because then
Proposition 3.9 would imply that V (xt) ≡ N∗ on R, contradicting i 6= N∗ 6= j.

If none of ω(ϕ) and α(x) is the origin, then from Lemma 3.17 we obtain that ω(ϕ) ⊆ Mj and
α(x) ⊆Mi hold, so (m1) is fulfilled. If i = j, then the definition ofMi andMj imply that V (xt) = i = j
for all t ∈ R. On the other hand, Lemma 3.16 ensures that 0 /∈ α(x) ∪ ω(ϕ), thus xt ∈ Mi holds for all
t ∈ R. This establishes property (m2).

If ω(ϕ) = {0} 6= α(x), then ω(ϕ) ⊆ MN∗ holds by definition. Furthermore, Proposition 3.9 implies
that V (xt) ≥ N∗ holds for all t ∈ R, and consequently N∗ < j ≤ i. On the other hand, Lemma 3.17
yields that α(x) ⊆Mi, so (m1) holds. Property (m2) is fulfilled automatically.

An analogous argument applies for the case when ω(ϕ) 6= {0} = α(x).

We have listed all possible cases, so the proof is complete.
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