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Abstract. Consider the delay differential equation

ẋ(t) = a

(
n∑
i=1

bi
[
x(t− si)− x(t− ri)

])
− g(x(t)),

where a > 0, bi > 0 and 0 ≤ si < ri (i ∈ {1, . . . , n}) are parameters, g : R→ R
is an odd C1 function with g′(0) = 0, the map (0,∞) 3 ξ 7→ g(ξ)/ξ ∈ R is

strictly increasing and supξ>0 g(ξ)/ξ > 2a. This equation can be interpreted

as a price model, where x(t) represents the price of an asset (e.g. price of share
or commodity, currency exchange rate etc.) at time t. The first term on the

right-hand side means the positive response for the recent tendencies of the

price and −g(x(t)) is responsible for the instantaneous negative feedback to
the deviation from the equilibrium price.

We study the local and global stability of the unique, non-hyperbolic equi-

librium point. The main result gives a sufficient condition for global asymptotic
stability of the equilibrium. The region of attractivity is also estimated in case

of local asymptotic stability.

1. Introduction. In this paper we consider the delay differential equation

ẋ(t) = a

(
n∑
i=1

bi
[
x(t− si)− x(t− ri)

])
− g(x(t)), (1.1)

where n is a positive integer, a > 0, bi > 0 and 0 ≤ si < ri (i ∈ {1, . . . , n})
are parameters such that

∑n
i=1 bi = 1, and g : R → R is an odd C1 function with

g′(0) = 0; moreover we assume that the map (0,∞) 3 ξ 7→ g(ξ)/ξ ∈ R is strictly
increasing and supξ>0 g(ξ)/ξ > 2a. It is important to note, that this also implies
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2 ÁBEL GARAB, VERONIKA KOVÁCS AND TIBOR KRISZTIN

that g is strictly increasing. The assumption that g is odd could be avoided, but it
would make the proofs technically more involved.

Erdélyi, Brunovský and Walther [3, 4, 15] studied the following special case of
equation (1.1):

ẋ(t) = a
[
x(t)− x(t− 1)

]
− β|x(t)|x(t), (1.2)

where β is a positive parameter. Erdélyi [6] gave a detailed interpretation of equa-
tion (1.2) according to which x(t) represents the price of an asset at time t (e.g. price
of share or commodity, currency exchange rate etc.). The positive response to the
recent tendency of the price is represented by a[x(t)−x(t−1)], while −β|x(t)|x(t) is
responsible for the negative feedback to the deviation from the unique equilibrium,
which is the origin.

From the modelling point of view it is natural to assume that when we are trying
to figure out the tendencies of the price, we are more likely to think of it as a
weighted sum of recent changes of the price (i.e.

∑n
i=1 bi

[
x(t − si) − x(t − ri)

]
,

0 ≤ si < ri, presumably with smaller weights on less recent values of the price),
rather than to compare the current price only to one previous value of it, x(t− 1).
It is also natural to allow more general functions for the instantaneous feedback
than x 7→ −β|x|x. Both these possibilities are incorporated in equation (1.1).

Numerical simulations provided by Erdélyi [6] suggested the existence of a sta-
ble (slowly oscillating) periodic solution of equation (1.2) for a > 1, which was
established in [3, 4]. This result has recently been generalized by Stumpf [14] for
a state-dependent delay version of equation (1.2). Walther analyzed further the
slowly oscillating periodic solution of equation (1.2) and showed that it converges
to a square-wave solution as a tends to infinity [15], and that the period tends to
infinity as a→ 1+ [16].

It is shown in [6] that the unique equilibrium of (1.2) is unstable for a > 1 and
locally asymptotically stable for a < 1. Since the equilibrium is non-hyperbolic, the
latter was carried out by a center manifold reduction. Numerical observations in
[6] also indicated global attractivity of the unique equilibrium of (1.2) for a < 1.

In this paper we prove that the unique, non-hyperbolic equilibrium of (1.1)
(the origin) is unstable if a

∑n
i=1 bi(ri − si) > 1, locally asymptotically stable if

a
∑n
i=1 bi(ri − si) < 1, and we provide a lower bound on the domain of attraction

of the equilibrium. Furthermore, sufficient conditions for the global asymptotic sta-
bility of the origin are given. More precisely, we show that all solutions of equation
(1.1) converge to 0 as t→∞ if

a2
n∑
i=1

bi
(
r2
i − s2

i

)
<

(
1− a

n∑
i=1

bi(ri − si)
)2

.

In particular, the result yields that the zero solution of equation (1.2) is globally
asymptotically stable if a < 1

2 .
In order to show local stability and to estimate the region of attraction of a

non-hyperbolic equilibrium, the application of center manifolds seems natural. It
works here as well. However, taking advantage of the particular structure of the
equation, we use another technique. This technique gives global results in addition
to local ones. Moreover, we believe that the estimation for the region of attractivity
are better than those could be obtained via the center manifold reduction. The
main idea is that equation (1.1) is considered in a neutral equation form and its
solutions are transformed (in an invertible way) to solutions of a linear, infinite delay
equation. Then stability and convergence are guaranteed by the 3/2-type stability
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results due to Krisztin [11]. These are stated and proved in Section 3. Similar ideas
were applied in [2, 8].

Section 4 is devoted to the single delay case, i.e. n = 1 with s1 = 0. In this special
case one can use the Poincaré–Bendixson-type theorem and some monotonicity
properties of (possible) periodic solutions by Mallet-Paret and Sell [12] to improve
the result a < 1

2 .
In Section 5, some relevant examples are given to illustrate the results, and we

also show some directions on possible further studies in the topic.
In the next section we introduce the notations and recall some preliminary results

that will be used in subsequent sections.

2. Preliminaries. By rescaling time, one may assume that max1≤i≤n ri = 1. Let
Nk denote the set of positive integers not greater than k, and let them-fold Cartesian
product Nk × · · · × Nk be denoted by Nmk . We say that a continuous function
x : [−1,∞) → R is a solution of equation (1.1) if it is differentiable for t > 0 and
satisfies equation (1.1) for t > 0. Let C = C([−1, 0],R) denote the Banach space of
continuous real functions on the interval [−1, 0], endowed with the maximum norm:
‖ϕ‖C = max−1≤t≤0 |ϕ(t)|, for ϕ ∈ C. For a given continuous map ψ : I → R, I ⊆ R,
and t ∈ R with [t− 1, t] ⊆ I, let the segment ψt ∈ C be defined by ψt(s) = ψ(t+ s)
for −1 ≤ s ≤ 0. By the method of steps it can be shown that for every ϕ ∈ C there
exists a unique solution xϕ : [−1,∞)→ R of equation (1.1), for which xϕ0 = ϕ.

Theorem 2.1 is one of the key tools in the proof of our main results. In order to
formulate it, we need to introduce several definitions and notions (see also [11]). Let
BC denote the set of bounded, continuous functions mapping (−∞, 0] into R, and
for ϕ ∈ BC let ‖ϕ‖BC = sups≤0 |ϕ(s)|. For α ∈ R, ψ ∈ C((−∞, α],R) and t ≤ α,
let ψt ∈ BC be defined by ψt(s) = ψ(t + s), s ≤ 0. As ψt may now denote two
similar, but different maps, we will always make it unambiguous by writing either
ψt ∈ C or ψt ∈ BC .

Consider the functional differential equation

ẋ(t) = F (t, xt), (2.1)

where F : [0,∞) × BC → R, F ( · , 0) ≡ 0, and for any ψ ∈ C(R,R) with ψt ∈ BC
the function t 7→ F (t, ψt) is continuous on [0,∞). The function x( · ) = x( · ; t0, ϕ) ∈
C((−∞, t0 + ω),R) is a solution of equation (2.1) through a given pair (t0, ϕ) ∈
[0,∞)×BC on [t0, t0 +ω), ω > 0, if xt0 = ϕ and equation (2.1) holds on (t0, t0 +ω).
We also assume that some additional conditions are satisfied for F guaranteeing that
a unique solution exists on [t0,∞) for all t0 ≥ 0 and ϕ ∈ BC (see [5, 10]).

The zero solution of (2.1) is said to be

(i) uniformly stable if for any ε > 0 there exists δ(ε) > 0 so that

t ≥ t0 ≥ 0, ‖ϕ‖ < δ imply |x(t; t0, ϕ)| < ε;

(ii) uniformly asymptotically stable if it is uniformly stable and there exist δ0 > 0
and a function T (ε) of ε > 0 such that

‖ϕ‖ < δ0, t0 ≥ 0, t ≥ t0 + T imply |x(t; t0, ϕ)| < ε.
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Let M denote the space of functions µ : [0,∞) → [0,∞) being bounded, non-
decreasing, continuous from the left and not identically constant. For µ ∈M let

µ0 =

∫ ∞
0

dµ(s), µ1 =

∫ ∞
0

s dµ(s) and

µ2 = µ1 +
µ0

2

∫ 1/µ0

0

(
1

µ0
− s
)2

dµ(s).

(2.2)

Now we are in a position to state the following generalization of Yorke’s theorem
[17].

Theorem 2.1 ([11, Theorem 1.2]). Assume that there exists µ ∈M so that for all
t ≥ 0 and ϕ ∈ BC it satisfies the condition

−
∫ ∞

0

Mu(ϕ) dµ(u) ≤ F (t, ϕ) ≤
∫ ∞

0

Mu(−ϕ) dµ(u), (2.3)

where Mu is defined by

Mu(ϕ) = max

{
0, max
s∈[−u,0]

ϕ(s)

}
for ϕ ∈ BC and u ≥ 0. Then the following statements hold.

(i) If µ2 ≤ 3/2, then the zero solution of equation (2.1) is uniformly stable.
(ii) If µ2 < 3/2, and condition{

tn →∞, ϕ ∈ BC , c ∈ R, c 6= 0, ϕn(s)→ c uniformly on

compact subsets of (−∞, 0] imply that F (tn, ϕn) 6→ 0 as n→∞

}
(2.4)

is satisfied, then the zero solution of equation (2.1) is uniformly asymptotically
stable.

(iii) If µ2 ≤ 3/2 and condition (2.3) is only assumed to hold for all t ∈ [0, t0] and
ϕ ∈ BC , then for any ε > 0 and ψ ∈ BC fixed

‖ψ‖BC ≤ εe−5/2 implies ‖xt( · ; t0, ψ)‖BC ≤ ε for all t ≤ t0.

Proof. The first two statements and their proofs can be found in [11]. Statement (iii)
can also be proved by arguing the same way (with straightforward modifications)
as in the proof of statement (i), thus the proof is omitted here.

It is easy to check that µ2 − µ1 ≤ 1/2, therefore the following corollary holds.

Corollary 2.2 ([11, Corollary 1.3]). If the conditions µ2 ≤ 3/2 and µ2 < 3/2 in
Theorem 2.1 are replaced by µ1 ≤ 1 and µ1 < 1, respectively, then the statements
of the theorem remain true.

3. Results. Let us turn our attention to equation (1.1). Let h : R→ R be defined
by

h(ξ) =


g(ξ)

ξ
, for ξ 6= 0,

0, for ξ = 0.
(3.1)

It is clear from the assumptions on g (given in equation (1.1)), that function
h is even, continuous and it is positive and strictly increasing on (0,∞). Let
h−1 : [0,∞] → [0,∞] denote the inverse of the restricted map h|[0,∞). We have
the following boundedness result for solutions of (1.1).
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Lemma 3.1. For every ϕ ∈ C, the following statement holds:

−h−1(2a) ≤ lim inf
t→∞

xϕ(t) ≤ lim sup
t→∞

xϕ(t) ≤ h−1(2a).

Proof. Note that this lemma is proved in [3, Proposition 2.4] (see also [4]) for
equation (1.2).

First note that the definition of the map h combined with the assumption that
g(ξ)/ξ is strictly increasing yields that the following hold for all ξ > 0:

ξ < h−1(2a)⇐⇒ g(ξ) < 2aξ,

ξ = h−1(2a)⇐⇒ g(ξ) = 2aξ,

ξ > h−1(2a)⇐⇒ g(ξ) > 2aξ.

 (3.2)

It is easy to see that for any M ≥ h−1(2a), if ‖ϕ‖C < M , then ‖xϕt ‖C < M for
all t > 0. To see this, assume to the contrary that there exists t0 > 0 such that
|x(t0)| = M , and |x(t)| < M for all t ∈ [−1, t0). Let us consider the case x(t0) = M ,
as the case of x(t0) = −M is analogous. Then we have

0 ≤ ẋ(t0) = a

(
n∑
i=1

bi
[
x(t0 − si)− x(t0 − ri)

])
− g(x(t0)) < 2aM − g(M) ≤ 0,

a contradiction proving the claim.
This implies that for any ϕ ∈ C, x(t) := xϕ(t) is bounded on t ∈ [0,∞). Thus

there exists M := lim supt→∞ x(t) and m := lim inft→∞ x(t), both finite. We may
suppose that |M | ≥ |m|, as the case |M | ≤ |m| can be handled similarly.

By way of contradiction, suppose that M > h−1(2a). Properties (3.2) and con-
tinuity of g guarantee that there exists ε > 0 and δ > 0 small enough such that

g(M − ε) ≥ 2a(M + ε) + δ > 0. (3.3)

Let ε and δ be fixed this way. By definition of M , there exists T = T (ε) ≥ 0
such that |x(t)| < M + ε for t > T − 1. Now, if an arbitrary t0 ≥ T is such that
x(t0) ≥M − ε holds, then we infer

ẋ(t0) = a

(
n∑
i=1

bi
[
x(t0 − si)− x(t0 − ri)

])
− g(x(t0))

≤ 2a(M + ε)− g(M − ε)
≤ −δ < 0.

(3.4)

This means that either x(T ) ≤ M − ε and then x(t) ≤ M − ε holds for all t > T
as well, or x(T ) > M − ε. In the latter case, inequality (3.4) implies that there
exists T ′ > T such that x(t) < M − ε for all t > T ′. Both cases contradict to the
assumption that M = lim supt→∞ x(t), which proves our claim.

We will transform equation (1.1) to an infinite delay differential equation, for
which we need some further notations. For a given α ∈ R we introduce the weighted
space of continuous functions

Cα =
{
ϕ ∈ C((−∞, 0],R) : lim

t→−∞
eαtϕ(t) = 0

}
endowed with the norm

‖ϕ‖α = sup
t≤0

eαt|ϕ(t)|.
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Note that for any ϕ ∈ BC , ϕ ∈ Cα also holds for any α > 0. For α ∈ R let BVα be
the set of functions µ : [0,∞)→ R of bounded variation satisfying

‖µ‖α :=

∫ ∞
0

eαt d|µ|(t) <∞,

where |µ| denotes the total variation function of µ. For µ ∈ BVα let the convolution
operator Lµ, mapping Cα to itself, be defined by

(Lµϕ)(t) =

∫ ∞
0

ϕ(t− s) dµ(s) (t ≤ 0). (3.5)

Now, let δ ∈ BVα and νi ∈ BVα for all i ∈ Nn be defined by

δ(t) =

{
0 if t = 0,

1 if t > 0,
and νi(t) =


abisi if 0 ≤ t ≤ si
abit if si < t ≤ ri
abiri if t > ri,

(3.6)

and let

ν =

n∑
i=1

νi, η = δ − ν. (3.7)

It is clear that η ∈ BVα for any α ∈ R. Then equation (1.1) can be written in the
following neutral equation form:

d

dt

[
x(t)−

n∑
i=1

∫ ∞
0

x(t− s) dνi(s)

]
= −g(x(t)) (t > 0),

or equivalently
d

dt

[
(Lηxt)(0)

]
= −g(x(t)) (t > 0). (3.8)

Here function x can be extended to the interval (−∞, 1) for example by letting
x(t) = x(−1) for all t < −1. However, as η is constant on [1,∞), the value of Lηxt
does not depend on the extension.

For brevity we will frequently use the following notations:

A := a

n∑
i=1

bi(ri − si) and B :=
a

2

n∑
i=1

bi
(
r2
i − s2

i

)
. (3.9)

It is clear that the total variation of ν is A. We claim that if A < 1, then
Reλ ≤ logA < 0 holds for all roots λ ∈ C of the (characteristic) equation

1−
∫ 1

0

e−λs dν(s) = 0.

This is indeed true, since for Reλ > logA we have the following estimates∣∣∣∣∫ 1

0

e−λs dν(s)

∣∣∣∣ ≤ ∫ 1

0

max
s∈[0,1]

∣∣e−λs∣∣ d|ν|(s) < e− logAA = 1.

Now, by [9, Theorem XII.4.1], the operator D : C → R, defined by Dϕ =
(Lηϕ

e)(0), is stable, where ϕe ∈ BC denotes an extension of ϕ ∈ C. For defi-
niteness, one may take ϕe(t) = ϕ(−1) for t < −1, however, the value of Dϕ does
not depend on the extension itself.

This ensures that the following lemma by Staffans [13] holds. See also Lemma 2.2
and Remark 2.1 of [7].
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Lemma 3.2. If a
∑n
i=1 bi(ri−si) < 1, then for α > 0 small enough, the operator Lη

defined by (3.5)–(3.7) maps Cα into itself continuously, it has a continuous inverse
L−1
η , and there exists a function η̃ ∈ BVα, such that the inverse operator is the

convolution operator Lη̃, i.e. Lη̃Lη = LηLη̃ = Lδ = id. Moreover Lη̃ = (Lδ−Lν)−1

can be expressed by the convergent power series Lη̃ =
∑∞
k=0 L

k
ν .

Remark 3.3. Note that from the power series expansion Lη̃ =
∑∞
k=0 L

k
ν and from

the monotonicity of ν it follows that function η̃ is also monotonic. Moreover, as we
will only integrate continuous functions with respect to η̃, we may assume without
loss of generality that η̃ is continuous from the left. Consequently η̃ ∈ M can be
assumed.

Now we are ready to state our main theorem.

Theorem 3.4. The zero solution of (1.1) is

(i) unstable if A > 1;
(ii) locally asymptotically stable if A < 1; moreover xϕ(t)→ 0 provided that

‖ϕ‖C <
(1−A)e−5/2

1 +A
h−1

(
(1−A)2

B

)
;

(iii) globally asymptotically stable (i.e. locally stable and globally attractive) if

A < 1 and 2aB < (1−A)2.

Proof. To prove statement (i), assume that A > 1 and consider the characteristic
equation of the linearization of equation (1.1):

∆(λ) := a

n∑
i=1

bi
(
e−λsi − e−λri

)
− λ = 0. (3.10)

Observe that ∆(λ) → −∞ as λ → ∞. Then continuity of the map ∆ combined
with ∆(0) = 0 and d

dλ∆(0) = A−1 > 0 yields that there exists at least one positive
real characteristic root, proving statement (i).

Since 0 is always a characteristic root, a linearized stability theorem cannot be
applied here. A different approach is necessary to prove local stability. We will
transform our equation to a non-autonomous infinite delay equation of the form
(3.8) and apply Corollary 2.2.

For the rest of the proof, let us assume that A < 1. For fixed ϕ ∈ C extend the
solution x = xϕ : [−1,∞) → R to a map R → R by x(t) = x(t − 1) for t < −1.
We denote the extension also by x. Then xt ∈ BC for all t ∈ R. Using notations
(3.5)–(3.7) and letting

y(t) = (Lηxt)(0) = x(t)−
∫ ∞

0

x(t− s) dν(s)

= x(t)− a
n∑
i=1

(
bi

∫ ri

si

x(t− s) dνi(s)
) (3.11)

for all t ∈ R, one obtains that yt ∈ BC for all t ∈ R, and y satisfies

ẏ(t) = −g(x(t)) = −h(x(t))x(t) (3.12)

for all t > 0, where the map h is defined by (3.1). On the other hand, Lemma 3.2
and Remark 3.3 guarantees that there exists η̃ ∈M such that

x(t) = (Lη̃yt)(0) (t ∈ R). (3.13)
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Using the above notations and β(t) := −h(x(t)) we have that z = y is a solution of
the non-autonomous, linear differential equation with infinite delay

ż(t) = β(t)

∫ ∞
0

z(t− s) dη̃(s) (t > 0). (3.14)

Our aim is to apply Corollary 2.2 for equation (3.14). For this reason we need
to calculate η̃0 and η̃1 defined by (2.2). Let ϕ0(t) ≡ 1 and ϕ1(t) ≡ −t for all t ∈ R.
Then one easily gets that

η̃0 =

∫ ∞
0

dη̃(s) = (Lη̃ϕ0)(0) =

∞∑
k=0

(Lkνϕ0)(0) =

∞∑
k=0

Ak =
1

1−A
. (3.15)

Similarly, one obtains the following:

η̃1 =

∫ ∞
0

s dη̃(s) = (Lη̃ϕ1)(0)

=

∞∑
k=0

(Lkνϕ1)(0)

= (Lδϕ1)(0) +

∞∑
k=1

∑
I∈Nk

n

((∏
i∈I

Lνi

)
ϕ1

)
(0)

=

∞∑
k=1

∑
I∈Nk

n

((∏
i∈I

Lνi

)
ϕ1

)
(0).

(3.16)

Let us further examine this last product of operators. For simplicity, fix I = Nk
for now. By definition of operator Lνi we have

((∏
i∈I

Lνi

)
ϕ1

)
(t) =

∫ ∞
0

· · ·
∫ ∞

0

ϕ1

(
t− (u1 + · · ·+ uk)

)
dν1(u1) · · · dνk(uk)

=

(
k∏
i=1

abi

)∫ rk

sk

· · ·
∫ r1

s1

(
u1 + · · ·+ uk − t

)
du1 · · · duk.

Thus ((∏
i∈I

Lνi

)
ϕ1

)
(0) =

(
k∏
i=1

abi

)∫ rk

sk

· · ·
∫ r1

s1

(u1 + · · ·+ uk) du1 · · · duk

holds. We claim that

∫ rk

sk

· · ·
∫ r1

s1

(
u1 + · · ·+ uk

)
du1 · · · duk =

1

2

(
k∑
j=1

(rj + sj)

)(
k∏
i=1

(ri − si)

)
.
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This trivially holds for k = 1. Assume that the claim holds for some k ≥ 1. Then
one easily gets that∫ rk+1

sk+1

· · ·
∫ r1

s1

(
u1 + · · ·+ uk+1

)
du1 · · · duk+1

=

∫ rk+1

sk+1

[ ∫ rk

sk

· · ·
∫ r1

s1

(
u1 + · · ·+ uk

)
du1 · · · duk

]
duk+1

+

∫ rk+1

sk+1

· · ·
∫ r1

s1

uk+1 du1 · · · duk+1

=
1

2

(
k∑
j=1

(rj + sj)

)(
k∏
i=1

(ri − si)

)∫ rk+1

sk+1

duk+1

+

(
k∏
i=1

(ri − si)

)∫ rk+1

sk+1

uk+1 duk+1

=
1

2

(
k+1∑
j=1

(rj + sj)

)(
k+1∏
i=1

(ri − si)

)
,

proving our claim. This yields that((∏
i∈I

Lνi

)
ϕ1

)
(0) =

1

2

(
k∑
j=1

(rj + sj)

)(
k∏
i=1

abi(ri − si)

)
.

In a similar fashion one obtains that((∏
i∈I

Lνi

)
ϕ1

)
(0) =

1

2

(∑
j∈I

(rj + sj)

)(∏
i∈I

abi(ri − si)

)
(3.17)

holds for any set of indices I.
Now, observe that for any positive integer k we have∑

I∈Nk
n

[(∏
i∈I

abi(ri − si)

)(∑
j∈I

(rj + sj)

)]

= k

(
a

n∑
j=1

bj
(
r2
j − s2

j

))(
a

n∑
i=1

bi(ri − si)

)k−1

.

(3.18)

Substituting formulas (3.17) and (3.18) into (3.16) and using notations (3.9) we
obtain

η̃1 = B

[ ∞∑
k=0

(k + 1)Ak

]
=

B

(1−A)2
. (3.19)

Now we are in a position to prove statement (ii). Let ε > 0 be fixed arbitrarily.
We will give δ = δ(ε) such that ‖xt‖C < ε holds for all t > 0 provided that
‖x0‖C < δ.

To prove this, let β0 > 0 and ε0 > 0 be fixed such that

β0 <
(1−A)2

B
=

1

η̃1
(3.20)

ε0 := min

{
(1−A)ε,

h−1(β0)

η̃0

}
= (1−A) min{ε, h−1(β0)} (3.21)
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hold. Note that if for some t0 > 0, |y(t)| ≤ ε0 holds for all t ∈ (−∞, t0], then, by
formula (3.15),

|β(t)| = |h(x(t))| =
∣∣∣h(∫∞0 y(t− s) dη̃(s)

)∣∣∣ ≤ h(ε0

∫∞
0
dη̃(s)

)
≤ β0 (3.22)

also holds for all t ∈ (−∞, t0). Finally, let ε1 ∈ (0, ε0),

δ = δ(ε) =
ε1e
−5/2

1 +A
, (3.23)

and ‖x0‖C < δ. Then for t ≤ 0,

|y(t)| =
∣∣(Lηxt)(0)

∣∣ =

∣∣∣∣x(t)−
∫ ∞

0

x(t− s) dν(s)

∣∣∣∣ ≤ δ + δ

∫ ∞
0

dν(s) = δ(1 +A)

holds, yielding ‖y0‖BC < ε1e
−5/2. We claim that ‖yt‖BC < ε0 holds for all t > 0.

Assume to the contrary that this is not the case. Since ‖y0‖BC ≤ ε1e
−5/2 < ε1 <

ε0, thus there must exist t0 > 0 such that |y(t0)| = ε0 and |y(t)| < ε0 for all
t ∈ (−∞, t0). From (3.22) it follows that |β(t)| ≤ β0 for t ∈ (−∞, t0]. Now recall
that

ẏ(t) = β(t)

∫ ∞
0

y(t− s) dη̃(s)

holds for all t > 0 and note that for µ := β0η̃ one has µ1 < 1, from which µ2 < 3/2
also follows (see (2.2) for the definition of µ1 and µ2). Use notation F (t, ϕ) :=
β(t)

∫∞
0
ϕ(t − s) dη̃(s) and observe that (2.4) can only be violated if β(t) → 0 as

t → ∞, but in that case we readily have x(t) → 0. It is easy to verify that all
conditions on F , required by Theorem 2.1, are satisfied. Thus Theorem 2.1 (iii)
can be applied to conclude that |y(t)| < ε1 < ε0 holds for all t ∈ [0, t0], which is a
contradiction. Therefore ‖yt‖BC < ε0 for all t > 0.

Now, observe that by formulas (3.15) and (3.21) and η̃ ∈M

|x(t)| =
∣∣∣∣ ∫ ∞

0

y(t− s) dη̃(s)

∣∣∣∣ ≤ ε0η̃0 =
ε0

1−A
≤ ε

holds for all t > 0, which proves that the zero equilibrium of equation (1.1) is locally
stable.

To prove asymptotic stability, first we claim that y(t) → 0 implies x(t) → 0
(as t → ∞). To see this, let ε > 0 be fixed arbitrarily and assume that y(t) → 0
as t → ∞. Let t0 be such that |y(t)| < ε2 := ε

2 (1 − A) for all t ≥ t0. Now

let N be a positive integer such that KAN < ε2, where K = max{ε2, ‖yt0‖BC}.
Then assuming (without loss of generality) that maxi∈Nn

ri = 1 and using that ν is
monotone non-decreasing we obtain for all t > t0 +N − 1 the following estimates:

|x(t)| =

∣∣∣∣∣y(t) +

∞∑
k=1

(Lkνyt)(0)

∣∣∣∣∣
≤ |y(t)|+

∞∑
k=1

(∫ 1

0

· · ·
∫ 1

0

|y(t− u1 − · · · − uk)| dν(u1) · · · dν(uk)

)

≤ ε2 +

∞∑
k=1

max
s∈[t−k,t]

|y(s)|Ak ≤ ε2

N−1∑
k=0

Ak +K

∞∑
k=N

Ak <
ε2 +KAN

1−A
< ε,

which proves the claim.
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Now, fix ε > 0 arbitrarily so that

ε < h−1
(

(1−A)2

B

)
holds. Note that during the proof of local stability we also showed that if

δ <
(1−A)e−5/2ε

1 +A

and ‖x0‖C < δ, then |x(t)| < ε for all t ≥ −1. Consequently |β(t)| < h(ε) <
(1 − A)2/B holds for all t ≥ −1. Finally, applying Theorem 2.1 (ii) and Corollary
2.2 for equation (3.14) with µ := h(ε)η̃ and F (t, ϕ) := β(t)

∫∞
0
ϕ(t − s) η̃(s), we

obtain that the zero solution of equation (3.14) is uniformly asymptotically stable.
As equation (3.14) is linear, this means that every solution of (3.14) converges to
zero, and in particular, y(t) → 0 as t → ∞, from which x(t) → 0 follows. This
completes the proof of statement (ii).

To prove assumption (iii), note that 2aB < (1 − A)2 guarantees that δ can be
chosen small enough so that (2a + δ)B < (1 − A)2 still holds. Then Lemma 3.1
yields that for t large enough |β(t)| < 2a+δ. Finally, applying Theorem 2.1 (ii) and
Corollary 2.2 for equation (3.14), µ := (2a+δ)η̃ and F (t, ϕ) := β(t)

∫∞
0
ϕ(t−s) η̃(s),

and using again the linearity of equation (3.14), we obtain that every solution of
(3.14) converges to zero, and thus y(t) → 0 as t → ∞ from which x(t) → 0 also
follows.

The third statement of the above theorem can be slightly amended by using
criterion µ2 < 3/2 instead of µ1 < 1. This result is formulated in the next theorem.

Theorem 3.5. The zero solution of (1.1) is globally asymptotically stable if

A < 1 and
2aB

(1−A)2
+ min

{
1

2
,

7(1−A)

12

}
<

3

2
,

where A and B are defined by (3.9).

Proof. We may assume that
7(1−A)

12
<

1

2
,

since otherwise the statement of the theorem coincides with Theorem 3.4 (iii). Then
by the conditions of the theorem there exists δ > 0 small enough such that for
M := (2a+ δ) the inequality

MB

(1−A)2
+

1−A
2

+
a(1−A)

6M
<

3

2

holds. Then Lemma 3.1 guarantees that M ≥ |β(t)| holds for t large enough.
Condition A < 1 ensures that equation (1.1) can be transformed to equation

ẏ(t) = F (t, yt),

with F (t, ϕ) := β(t)
∫∞

0
ϕ(t− s) dη̃(s). We will apply Theorem 2.1 to this equation

with µ := Mη̃. Therefore we need to estimate µ2 defined by (2.2). By formula
(3.19) we have

µ1 =
MB

(1−A)2
, (3.24)

so we only need an estimate on µ2 − µ1, which reads as

µ2 − µ1 =
µ0

2

∫ 1/µ0

0

(
1

µ0
− s
)2

dµ(s) =
Mµ0

2

∫ 1/µ0

0

(
1

µ0
− s
)2

dη̃(s).
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Using the notation

ϕ2(t) =

{(
1
µ0

+ t
)2

for t ∈
[
− 1

µ0
, 0
]
,

0 otherwise,

we obtain similarly as in formula (3.16) that∫ 1/µ0

0

(
1

µ0
− s
)2

dη̃(s) = (Lη̃ϕ2)(0) =
1

µ2
0

+

∞∑
k=1

(Lkνϕ2)(0).

We claim that

(Lkνϕ2)(0) ≤ aAk−1

3µ3
0

holds for all k ≥ 1. Indeed, using the definition of ϕ2 one has the estimates

(Lkνϕ2)(0) =

∫ ∞
0

· · ·
∫ ∞

0

ϕ2(−u1 − · · · − uk) dν(u1) · · · dν(uk)

≤
∫ ∞

0

· · ·
∫ ∞

0

ϕ2(−u1) dν(u1) · · · dν(uk)

≤ Ak−1

[
n∑
i=1

abi

∫ 1/µ0

0

(
1

µ0
− u1

)2

du1

]

=
aAk−1

3µ3
0

.

In the light of the above formulas we have obtained that

µ2 − µ1 ≤
M

2

(
1

µ0
+

a

3(1−A)µ2
0

)
.

Using µ0 = Mη̃0 = M/(1−A) one infers the inequality

µ2 − µ1 ≤
1−A

2
+
a(1−A)

6M
. (3.25)

Finally, application of Theorem 2.1 (ii) and a similar argument to that presented
in the proof of Theorem 3.4 (ii)–(iii) completes the proof.

4. The single delay case. In this section we improve the results of Theorems
3.4 (iii) and 3.5 for the case when n = 1 and s1 = 0 by applying the Poincaré–
Bendixson-type theorem and some monotonicity properties of (possible) periodic
solutions by Mallet-Paret and Sell [12].

In this case our equation reads as

ẋ(t) = a
[
x(t)− x(t− 1)

]
− g(x(t)), (4.1)

with a > 0 and with the same assumptions on the feedback function g as before.
Theorem 3.4 (iii) implies that the zero solution of equation (4.1) is globally asymp-
totically stable if a < 1/2. This can be slightly improved by applying Theorem 3.5
to obtain that a less than approximately 0.525 is sufficient for global stability.

We will shortly show that the region of global stability with respect to a can be
risen up to at least a < 0.61. To prove this, we will need Lemma 4.1.

Define

m(a) =


a for 0 < a ≤ log 2,

a(ea − 1) for log 2 < a ≤ log 3,

2a for a > log 3.
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Lemma 4.1. For all periodic solutions x of equation (4.1) the inequality

max
t∈R
|x(t)| ≤ h−1(m(a))

holds.

Proof. Let x be a non-constant periodic solution with minimal period T > 0. From
Theorems 7.1 and 7.2 of [12] we know that x has the special symmetry x(t+T/2) =
−x(t), t ∈ R. Without loss of generality we may assume M = maxt∈[0,T ] x(t) =
x(0) = x(T ). By the special symmetry of x, maxt∈R |x(t)| = M follows. The
statement of the lemma is that

h(M) =
g(M)

M
≤ m(a).

Lemma 3.1 gives the result for a ≥ log 3. Thus, in the sequel, we consider only the
case 0 < a < log 3.

As x has a maximum at T , from equation (4.1) one obtains that

x(T − 1) = M − g(M)

a
.

In case x(T − 1) ≥ 0, this equality implies h(M) ≤ a ≤ m(a).
Assume x(T − 1) < 0. Let t0 ∈ (T − 1, T ) be minimal with x(t0) = 0, and let

t1 ∈ (T − 1, T ) be maximal with x(t1) = 0. From equation (4.1) we obtain the
inequality

ẋ(t) ≤ ax(t) + C

for the intervals (T − 1, t0) and (t1, T ) with C = aM + g(M) and C = aM , respec-
tively. On these intervals

d

dt

[(
x(t) +

C

a

)
e−at

]
≤ 0

is satisfied. Using x(t0) = x(t1) = 0 and x(T − 1) = M − g(M)/a, integrations on
the respective intervals yield

ea(t0−(T−1)) ≥ 1

2
+
h(M)

2a

and

ea(T−t1) ≥ 2.

It follows that

1 ≥ (t0 − (T − 1)) + (T − t1) ≥ 1

a
log

a+ h(M)

2a
+

1

a
log 2 =

1

a
log

(
1 +

h(M)

a

)
.

Hence, using a < log 3 as well, we obtain

h(M) ≤ a(ea − 1) ≤ m(a).

This completes the proof.

Remark 4.2. We note that Lemma 3.1 holds for any solution and gives an upper
bound |x(t)| ≤ h−1(2a) as a special case for periodic solutions. However m(a) is
smaller than 2a if and only if a < log 3, thus Lemma 4.1 yields a better upper bound
for possible periodic solutions in that case. These lemmas are used to show that
there exist no non-constant periodic solutions of equation (4.1).
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Theorem 4.3. If a > 0 satisfies

m(a)a

2(1− a)2
+

1− a
2

+
a(1− a)

6m(a)
≤ 3

2
,

then the zero solution of equation (4.1) is globally asymptotically stable. Conse-
quently, it is globally asymptotically stable for a ∈ (0, 0.61).

Proof. We will use the notations introduced in the proof of Theorem 3.4.
First we claim that to prove the convergence of all solutions of (4.1) to zero, it

is sufficient to exclude non-constant periodic solutions.
Since the origin is the only equilibrium, its local stability (shown in Theorem 3.4)

excludes homoclinic solutions. Finally, the Poincaré–Bendixson theorem by Mallet-
Paret and Sell [12, Theorem 2.1] infers that the ω-limit set of a bounded solution of
equation (4.1) is either a single non-constant periodic orbit, or else it is the unique
equilibrium. Since all solutions are bounded as t→∞ by Lemma 3.1, the claim is
proved.

Assume that for some ϕ ∈ C, the solution xϕ is non-constant and periodic, and
fix x := xϕ. Lemma 4.1 yields that |β(t)| ≤ m(a) holds. By letting µ = m(a)η̃, one
obtains analogously to formulas (3.24) and (3.25) that

µ2 ≤
m(a)a

2(1− a)2
+

1− a
2

+
a(1− a)

6m(a)
. (4.2)

Whence, applying Theorem 2.1 we may infer that y(t) → 0 and consequently
x(t)→ 0 as t→∞ provided that

m(a)a

2(1− a)2
+

1− a
2

+
a(1− a)

6m(a)
<

3

2
.

For a < 0.61 < log 2 we have m(a) = a, thus the above inequality reduces to

a2

2(1− a)2
+

2(1− a)

3
<

3

2
.

It is elementary to check that this holds for a ∈ (0, 0.61), which completes the
proof.

5. Discussion and examples. We note that if feedback function g is fixed, and
possibly some further restrictions (e.g. n = 1) are made, one may use the domain of
attraction – obtained in Theorem 3.4 (ii) – to improve the results on global stability.
This could be carried out for certain parameters by showing that, for a conveniently
chosen ε, and for all ϕ ∈ C with ‖ϕ‖C < h−1(m(a)) + ε, solution xϕt gets inside
of the above mentioned domain, which would imply global stability. This could
presumably be done for n = 1, s1 = 0 and for approximately A ≤ 0.999 by a
computer aided proof similarly to that applied in [1] for the Wright equation.

In the following examples we will apply Theorem 3.4 to two special cases. Both
of them seem relevant from the modelling point of view. In both cases si = 0 is
assumed, that is, we compare previous values of the price only to the current price.

Example 5.1 (The case of “uniformly weighted memory”). Let

bi =
1

n
ri =

i

n
, and si = 0 for i ∈ Nn. (5.1)

Then Theorem 3.4 implies that the origin is locally stable if

L0(n) :=
2n

1 + n
> a
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and unstable if a > L0(n). For n > 1, the zero solution is globally asymptotically
stable if

G0(n) := 2
√

6 ·

√
2n3 + n2

(n− 1)2(n+ 1)
− 6n

n− 1
> a.

Considering the fraction of the measures of the regions of global stability and local
stability G0(n)/L0(n), it can be easily proved that G0(n)/L0(n) is strictly decreas-

ing in n and converges to −3 + 2
√

3 ≈ 0.464, as n tends to infinity.

Example 5.2 (The case of “linearly fading memory”). In this case, the weights
corresponding to the delayed terms decrease linearly with respect to the delay.
From the modelling point of view it means that when considering the tendency of
the price, i.e. when one compares the current price to previous ones, the more recent
the price, the more impact it has on our feedback.

Accordingly, let

bi =
n+ 1− i∑n

j=1 j
=

2(n+ 1− i)
n(n+ 1)

, ri =
i

n
and si = 0 for i ∈ Nn.

For n > 1, Theorem 3.4 yields that the origin is locally stable if

L1(n) :=
3n

2 + n
> a,

unstable if a > L1(n), and globally asymptotically stable if

G1(n) := 3
√

6 ·

√
n3 + n2

(n− 1)2(n+ 2)
− 6n

n− 1
> a.

Applying an analogous argument to that presented in the previous example, one
obtains that G1(n)/L1(n) is strictly decreasing in n and converges to −2 + 2

√
6 ≈

0.449, as n tends to infinity.

Let us modify the above example by letting si > 0.

Example 5.3. Let n = 4 and

bi =
5− i
10

, ri =
i

n
, si = ri −

1

8
for i ∈ N4.

Then Theorem 3.4 yields that the zero solution is locally asymptotically stable if
a < 8, unstable if a > 8, and globally asymptotically stable if a < 4(

√
7 − 1)/3 ≈

2.19.

Remark 5.4. If we choose si close to ri (e.g. by letting ri − si = δ(n) for all
i ∈ Nn), let n tend to infinity and assume δ(n)→ 0, then equation (1.1) approaches
a neutral differential equation of the form

d

dt

(
x(t)− a

∫ 1

0

x(t− s)b(s) ds
)

= −g(x(t)), b(s) ≥ 0 for s ∈ [0, 1]. (5.2)

The neutral equation with single delay

d

dt

[
x(t)− ax(t− 1)

]
= −g(x(t)) (5.3)

also appears naturally. The stability questions and the description of the dynamics
in case zero is unstable are interesting open problems.



16 ÁBEL GARAB, VERONIKA KOVÁCS AND TIBOR KRISZTIN

Remark 5.5. To prove analogous global stability results for equation (5.2) and
(5.3), we only miss a boundedness result analogous to Lemma 3.1. All other steps
of the proof can be carried out to get sufficient conditions for global stability.

However, if si ≈ ri, then unfortunately our theorems on global stability does not
seem to be efficient. To see this, fix n, bi, ri and si = ri − δ for all i ∈ Nn. Then
we get that the zero solution of equation (1.1) is locally asymptotically stable if
a < 1/δ. From Theorem 3.4 we can easily derive a formula G(δ), such that the zero
solution is globally asymptotically stable if a < G(δ) and it is not hard to prove

that
√
δG(δ)→ 1 as δ → 0 (even if we let n→∞), meaning in particular that the

fraction of the length of the regions (obtained by Theorem 3.4) of global and local
stability, respectively tends to zero as δ → 0. Nevertheless, numerical simulations
suggest that global stability is implied by local stability in this case, as well.

The reason for this ineffectiveness is that Lemma 3.1 is insensitive to the values
δ = ri − si. To demonstrate this, let us consider the equation

ẋ(t) = a

(
n∑
i=1

1

n

[
x
(
t− i−1

n

)
− x
(
t− i

n

)])
− g(x(t)). (5.4)

Indeed, this equation can be written much simpler, as follows:

ẋ(t) =
a

n

[
x(t)− x(t− 1)

]
− g(x(t)) (5.5)

However, for lim supt→∞ |h(x(t))|, Lemma 3.1 gives upper bounds 2a and 2a/n,
respectively. Similarly, if we apply Theorem 4.3, we need

n >
1

2

(
a2 + 2a

)
+

1

2

√
a4 + 4a3

to prove global stability for equation (5.4), which implies that a <
√
n is required.

For equation (5.5), global stability is granted by a < n/2. Note that using the
upper bound 2a/n one would get, by the argument presented in the proof of The-
orem 3.4 (iii), that 2aB/n < (1 − A)2 implies global stability (instead of requiring
condition 2aB < (1−A)2), which reduces to condition a < n/2, as well.

We also note that the zero solution is locally asymptotically stable if a < n.
In order to handle this issue, one would need effective boundedness results on

the derivative of the solutions.
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[12] J. Mallet-Paret and G. R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback
systems with delay, J. Differential Equations, 125 (1996), 441–489, URL http://dx.doi.org/

10.1006/jdeq.1996.0037.

[13] O. J. Staffans, A neutral FDE with stable D-operator is retarded, J. Differential Equations,
49 (1983), 208–217, URL http://dx.doi.org/10.1016/0022-0396(83)90012-8.

[14] E. Stumpf, On a differential equation with state-dependent delay: a center-unstable manifold
connecting an equilibrium and a periodic orbit, J. Dynam. Differential Equations, 24 (2012),

197–248, URL http://dx.doi.org/10.1007/s10884-012-9245-6.

[15] H.-O. Walther, Convergence to square waves for a price model with delay, Discrete Contin.
Dyn. Syst., 13 (2005), 1325–1342, URL http://dx.doi.org/10.3934/dcds.2005.13.1325.

[16] H.-O. Walther, Bifurcation of periodic solutions with large periods for a delay differential

equation, Ann. Mat. Pura Appl. (4), 185 (2006), 577–611, URL http://dx.doi.org/10.

1007/s10231-005-0170-8.

[17] J. A. Yorke, Asymptotic stability for one dimensional differential-delay equations., J. Differ-

ential Equations, 7 (1970), 189–202.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: garab@math.u-szeged.hu

E-mail address: krisztin@math.u-szeged.hu

http://dx.doi.org/10.1006/jdeq.1994.1019
http://dx.doi.org/10.1016/0362-546X(90)90171-C
http://dx.doi.org/10.1016/0362-546X(90)90171-C
http://dx.doi.org/10.1016/0022-0396(80)90093-5
http://dx.doi.org/10.1016/0022-0396(80)90093-5
http://www.math.kobe-u.ac.jp/~fe/xml/mr1130462.xml
http://www.math.kobe-u.ac.jp/~fe/xml/mr1130462.xml
http://dx.doi.org/10.1006/jdeq.1996.0037
http://dx.doi.org/10.1006/jdeq.1996.0037
http://dx.doi.org/10.1016/0022-0396(83)90012-8
http://dx.doi.org/10.1007/s10884-012-9245-6
http://dx.doi.org/10.3934/dcds.2005.13.1325
http://dx.doi.org/10.1007/s10231-005-0170-8
http://dx.doi.org/10.1007/s10231-005-0170-8
mailto:garab@math.u-szeged.hu
mailto:krisztin@math.u-szeged.hu

	1. Introduction
	2. Preliminaries
	3. Results
	4. The single delay case
	5. Discussion and examples
	REFERENCES
	References

