
Implementing GPU computations in Octave and
statistical applications

Albrecht Gebhardt1 & Gunter Spöck2

Institute for Statistics, Alpen-Adria University Klagenfurt, Austria
1albrecht.gebhardt@aau.at, 2gunter.spoeck@aau.at

Abstract
GNU Octave1 is a free software targeting scientific computing with focus on numerics and linear algebra. To

some extent it shares its syntax with MATLAB, a commercial tool widely used in science and engineering. During
the last years parallel computing has become more and more affordable, not only but to a large extent by the advent
of end user programmable GPU hardware providing hundreds or even thousands of specialized computing cores.
Such a parallel computing hardware is provided by Nvidia R© with its CUDA architecture.

Soon after the availability of the CUDA SDK some parallel processing toolboxes for MATLAB became pop-
ular (GPUmat2 and more recent the Parallel Computing ToolboxTM). For Octave only a small proof-of-concept
implementation exists (MMGPUOctave, see Teng (2008)), lacking all the comfortable features of its MATLAB
counterparts. We present an extension of this work which tries to fill this gap, providing the end user with a special
GPU matrix class where all relevant operations like multiplication and inversion are executed in parallel on the
GPU. This works mainly by providing an interface to cuBLAS3, a GPU accelerated implementation of the standard
BLAS operations.

We will show how this new data type can help to speed up operations in statistical applications involving a large
number of linear algebra operations. As example an application in monitoring network design for Trans-Gaussian
Kriging is presented.

Parallel Matrix Operations
One basic idea behind parallel matrix operations is to partition the matrices into blocks, e.g. like in
this simple example, and to split the matrix product AB into separate terms, see e.g. Chtchelkanova
et al. (1997):(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)
=

(
A11 A12

0 0

)(
B11 0
B21 0

)
+

(
A11 A12

0 0

)(
0 B12
0 B22

)
+(

0 0
A21 A22

)(
B11 0
B21 0

)
+

(
0 0
A21 A22

)(
0 B12
0 B22

)
which can be split further by applying(

A11 A12
0 0

)(
B11 0
B21 0

)
=

(
A11 0

0 0

)(
B11 0

0 0

)
+

(
0 A12
0 0

)(
0 0
B21 0

)
and so on. Now each computing node only has to multiply two smaller sized matrices Aij and Bkl
and these results have to be added afterwards. This principle is in use in most enhanced BLAS im-
plementations like in the Intel R© Math Kernel Library4, AMD R© Compute Library5 as well as in the
Nvidia R© cuBLAS Library.

Implementation in Octave
Octave enables developers to write functions
not only as m-files in Matlab-like syntax but
also in C++ to provide so called oct-files, dy-
namically loadable libraries (similar to MEX
files in MATLAB). Through this oct-file API
it is possible to interface octave with func-
tions from the cuBLAS library. Using this
approach we implemented the new data types
GPUsingle, GPUdouble and GPUspdouble
along with GPU enabled matrix multiplica-
tion operators. This work reused parts of the
MMGPUoctave package which already pro-
vides basic access to cuBLAS functions.

A sample call with octave 4.0.0 under Linux
on a 16GB AMD FX-8320E computer and a
Nvidia GTX 980 Ti with 2816 CUDA cores
and 6GB RAM on GPU gives the following
timings:

Octave:1> A = rand(1024*4,1024*3);
octave:2> B = rand(1024*3,1024*5);
octave:3> A1 = GPUsingle(A);
octave:4> B1 = GPUsingle(B);
octave:5> A2 = GPUdouble(A);
octave:6> B2 = GPUdouble(B);
octave:7> tic, C = A*B; toc
Elapsed time is 14.3948 seconds.
octave:8> tic, C1 = A1*B1; toc
Elapsed time is 0.549073 seconds.
octave:9> tic, C2 = A2*B2; toc
Elapsed time is 0.956822 seconds.

It can be seen that single precision opera-
tions are even faster, partly due to the smaller
amount of data to be copied from and to
the graphics card. Note that the first tim-
ing (A*B) doesn’t use CUDA but the AT-
LAS library6, when used with standard non-
optimized BLAS this timing increases to 90
seconds.

Application in Statistics
Many standard statistical applications are based on some sort of matrix algebra, e.g. solving systems
of normal equations by QR decomposition for parameter estimation in linear models or spatial predic-
tions, solving eigenvalue problems in multivariate statistics and so on. All these methods can benefit
from accelerated low level matrix operations provided by a parallelized BLAS implementation.

Trans-Gaussian kriging
We consider a mean square continuous
(m.s.c.) and isotropic random field {Z(x) :
x ∈ X ⊆ R2} such that

Y (x) = f(x)Tβ + ε(x), Eε(x) = 0,

Cov(Z(x), Z(y)) = C(||x− y||); x, y ∈ X.

which leads to the well known setup for uni-
versal kriging.

For Trans-Gaussian kriging apply a Box-
Cox transformation

gλ(z) =

{
zλ−1
λ : λ 6= 0

log(y) : λ = 0
.

to the positive valued data, see Spöck et al.
(2009). This approach targets the deficiencies
of classical universal kriging that arise from
applying it to non-normal data, especially un-
derestimation of the kriging variance.

Experimental Design
To incorporate uncertainty in the covariance
function we apply spectral decomposition ac-
cording to (Yaglom (2012)). This leads to a
mixed linear model

Z(x) ≈ f(x)Tβ + g(x)Tα + ε0(x).

where g(·) is made up of cosine-sine-Bessel
surface harmonics. Now treating all parame-
ters as random leads to a Bayesian spatial lin-
ear model

Z(x) = h(x)Tγ + ε0(x),

where

h(x) =

(
f(x)
g(x)

)
, γ =

(
β
α

)
,

Eγ =

(
µ
0

)
,Cov(γ) =

(
Φ 0
0 A

)
=: Γ.

ε0(x) is white-noise with variance σ2
0, A =

Cov(α), E(β) = µ ∈ Rr and Cov(β) = Φ.

Continuous designs are just probability
measures ξ on X and may be rounded to ex-
act designs dn. Introducing the continuous
Bayesian information matrix

MB(ξ) =

∫
X
h(x)h(x)T ξ(dx) +

σ2
0

n
Γ−1 and

U =

∫
X
h(x)h(x)Tdx,

leads to the extended design functional

Ψ(MB(ξ)) = tr(UMB(ξ)−1).

In Spöck and Pilz (2015) the Smith and Zhu
(2004) 95% predictive interval criterion∫
X

E(length of predictive interval at x0)dx0.

is extended to this Bayesian setup, allowing
to model uncertain covariance functions.

Exact design algorithm
The basic algorithm for calculating spatial
sampling designs is an exchange algorithm
from experimental design theory.
• Exchange algorithm

Step 1. Use some initial design dn,1 =
{x1,1, . . . , xn,1} ∈ Xn of size n.
Step 2. Beginning with s = 1 form the de-
sign dn+1,s = dn,s+(xn+1,s) by adding the
point

xn+1,s = arg min
x∈X

Ψ(MB(dn,s + (x)))

to dn,s.
Then form d

j
n,s = dn+1,s − (xj,s), j =

1, 2, . . . , n + 1 and delete that point xj∗,s
from dn+1,s for which

Ψ(MB(d
j∗
n,s)) = min

j∈{1,...,n+1}
Ψ(MB(d

j
n,s))).

Repeat Step 2 until the point to be deleted
is equivalent to the point to be added.

•Generation of an initial design
Step 1. Choose x1 ∈ X such that
x1 = arg minx∈X Ψ(MB((x))), and set
d1 = (x1).
Step 2. Beginning with i = 1, find xi+1
such that
xi+1 = arg minx∈X Ψ(MB(di + (x))) and
form di+1 = di + (xi+1).
Continue with i replaced by i + 1 until
i + 1 = n.
Step 3. If i + 1 = n then stop and take
dn,1 = {x1, . . . , xn} as an initial design.

• Combination of the above two algorithms

Using the dataset below a single innermost
step of the exchange algorithm (calculation
of a single estimated interval length) takes
around 10 seconds without GPU and around
5 seconds with GPU under the same settings
as above, overall duration is several hours.

Upper Austria Rainfall Network

The data set considered is a rainfall data set
from Upper Austria. The monitoring network
comprises 36 locations. Average monthly
rainfall has been measured at each location
starting in January 1994 and ending in De-
cember 2009. Covariance functions are for
each of the 12 months proportional to each
other.

Monthly rainfall at 36 stations:

0 2 4 6 8 10 12
0

50

100

150

200

250

300
monthly mean of rain

Average

0 2 4 6 8 10 12
−60

−40

−20

0

20

40

60

80

100

120
monthly mean of rain residuals

Resiudual

Optimal Design with additional 14 points:

Gaussian kriging,
space filling

Trans-Gaussian kriging,
more close locations,
better cov. estimation

Smith & Zhu 95% predictive intervals.
expected lengths of 95−percent predictive intervals

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16 40

60

80

100

120

140

160

180

Estimated lengths

2 4 6 8 10 12 14
72

74

76

78

80

82

84

86

88

90
average of the expected lengths of 95−percent predictive intervals

Decrease in average

References

Chtchelkanova, A., J. Gunnels, G. Morrow,
J. Overfelt, and R. A. van de Geijn (1997).
Parallel implementation of blas: general
techniques for level 3 blas. Concurrency:
Practice and Experience 9(9), 837–857.

Smith, R. L. and Z. Zhu (2004, November).
Asymptotic theory for kriging with esti-
mated parameters and its application to net-
work design.

Spöck, G., H. Kazianka, and J. Pilz (2009).
Bayesian trans-gaussian kriging with log-
log transformed skew data. In J. Pilz (Ed.),

Interfacing Geostatistics and GIS, pp. 29–
43. Springer Berlin Heidelberg.

Spöck, G. and J. Pilz (2015). Incorporating
covariance estimation uncertainty in spatial
sampling design for prediction with trans-
gaussian random fields. Frontiers in Envi-
ronmental Science 3(39).

Teng, G. C. (2008). Matrix multiplication on
GPU in octave. Technical report, Advanced
Computing Group.

Yaglom, A. (2012). Correlation Theory
of Stationary and Related Random Func-
tions: Supplementary Notes and Ref-
erences. Springer Series in Statistics.
Springer New York.

1http://octave.org
2http://sourceforge.net/projects/gpumat/
3https://developer.nvidia.com/cuBLAS
4https://software.intel.com/en-us/intel-mkl
5http://developer.amd.com/tools-and-sdks/opencl-zone/acl-amd-compute-libraries/

