
WWW.LINUX-MAGAZINE.COM

L
IN

U
X

 M
A

G
A

Z
IN

E
 IS

S
U

E
 2

7
8

J
A

N
U

A
R

Y
 2

0
2

4
Scientific Com

puting Data Science R Acoustic Keyloggers datam
ash PyScript I 2C Flight Sim

ulator Interface RA
R Files W

aydroid

R Programming
Get started with this

powerful scientific language

Waydroid: Run your Android
apps on Linux

ISSUE 278 – JANUARY 2024

Acoustic Keyloggers
Watch out for tools that

listen to keystrokes

PyScript
Python in a browser

Bond your NICs
Faster together, but

test as you go

with a Bitcoin mining rig

Scientific
Computing

10 TANTALIZING
FOSS FINDS!

FREE
DVD+I2C Flight Simulator Interface

on a Raspberry Pi

What a busy weekend in tech news. On Friday, we heard
that OpenAI, creators of ChatGPT, had fired CEO Sam
Altman, and by Monday, he had already found a new job
at Microsoft, along with cofounder Greg Brockman. More
than 700 OpenAI employees signed a letter saying they
would quit – and quite possibly jump to Microsoft – if the
OpenAI board didn’t hire Altman back and resign. Microsoft
said Altman and Brockman would lead Microsoft’s new ad-
vanced AI research team. OpenAI, on the other hand, went
into free fall, announcing an interim CEO whose tenure
lasted for two days before another CEO was named.

Wall Street was very happy for Microsoft, driving the share
price to a record high. Meanwhile, OpenAI was roundly
condemned – both for firing Altman and for the way they
did it. The word on the street was that Microsoft pulled off
a “coup” by snagging Altman, Brockman, and whoever
else they can pull over. Altman and others also referred to
his ousting by the OpenAI board as a “coup,” with a very
different spin on the term. Two coups in four days is a lot –
even at the frenetic pace of IT.

From a business viewpoint, Microsoft was simply capitaliz-
ing on an opportunity – and acting to protect their invest-
ment, because they had acquired a large stake in OpenAI
earlier this year and couldn’t afford to watch the company
self-destruct. But it is worth pointing out that this really isn’t
all from a business viewpoint. OpenAI is actually ruled by a
nonprofit board controlling a for-profit subsidiary. The ques-
tion of what is better for OpenAI’s business interests, which
seems to be the fat that everyone is chewing on, might not
be the best context for understanding these events.

Altman’s disagreement with the board appears to have
been about the pace of development and the safety of
the tools the company has developed. OpenAI’s vision is
supposed to be to develop AI “for the benefit of human-
ity,” which is very admirable, but it leaves lots of room
for interpretation. Altman, in particular, has occupied an
ambiguous space in the press, at once warning about the
dangers of AI and simultaneously pledging to press
ahead with development. No doubt he felt confident that
he was laying down sufficient guardrails along the way,
but that is something to communicate with your board
about, and it sounds like he wasn’t communicating to
their satisfaction. Should the board have trusted him and
let him forge ahead, knowing that the company was on a
roll and potentially on the verge of further innovations?
If they were a garden-variety corporate board, possibly
yes, but as a board member of a nonprofit, you are really
supposed to have more on your mind than power and
money. You’re supposed to know when to say “no,”
even if it annoys everyone and stirs up some turmoil.

Of course that is the charitable view of the board’s action.
A darker (and equally speculative) view is that nonprofit
boards can sometimes be highly dysfunctional, with a lot
of their own internal power games and politics, and
maybe the intrepid Altman was simply unable to steer
around a raging Charybdis of group think.

The whole story hung in a state of uncertainty for two
days; then lightening struck again: OpenAI hired Altman
back. Was this a third coup, or the undoing of a previous
coup? Microsoft gave the new plan its full support. OpenAI
ditched three of the four board members who voted for
Altman’s ouster (including the only two women), and the
new board has pledged a full investigation into what hap-
pened. We might need to wait for that report to know all
the details of the internal struggle that led to this unex-
pected whiplash festival, but one thing seems clear:
Altman and the full-steam-ahead faction is the winner and
the proceed-with-caution faction is out in the cold. Ousted
board member Helen Toner, for instance, recently co-au-
thored a paper that warned of a possible “race to the
bottom,” in the AI industry, “in which multiple players feel
pressure to neglect safety and security challenges in order
to remain competitive” [1]. Some are now saying that
paper helped to stir up the skirmish in the first place.

Why did Microsoft let Altman go back? It isn’t like them
to surrender the spoils of victories. Keep in mind that the
competition is heating up. Amazon just announced its
Olympus AI initiative, and Google, Meta, and several other
tech giants are all working on their own AI projects. Micro-
soft is already committed to building OpenAI’s technology
into its own products, and they might have realized that,
by the time the exiles settle into their new workspace and
get down to training models and producing real software,
their head start might already be gone.

OpenAI has regained its footing as a business, but as a
nonprofit devoted to serving humanity,
it appears to have fallen off its ped-
estal, or at least, dropped down to a
lower pedestal. I fear the biggest
loser in all this might be the opti-
mistic OpenAI vision of a nonprofit
innovator taking a principled stand
for methodical and safe develop-
ment of these revolutionary tools.

Note to governments: Now might
be a good time to provide some
meaningful restraints for the AI
industry – don’t expect them
to police themselves.

DEUCE COUPS

Joe Casad,
Editor in Chief

Dear Reader,

[1]	� “Decoding Intentions: Artificial Intelligence and Costly Signals,”
by Andrew Imbrie, Owen J. Daniels, and Helen Toner:
https://​cset.​georgetown.​edu/​wp‑content/​uploads/​
CSET‑Decoding‑Intentions.​pdf

Info

3

EDITORIAL

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

Welcome

https://cset.georgetown.edu/wp-content/uploads/CSET-Decoding-Intentions.pdf
https://cset.georgetown.edu/wp-content/uploads/CSET-Decoding-Intentions.pdf

JANUARY 2024

ON THE COVER

 8	 News
• AlmaLinux Will No Longer Be “Just Another RHEL Clone”
• OpenELA Releases Enterprise Linux Source Code
• �StripedFly Malware Hiding in Plain Sight as a

Cryptocurrency Miner
• �Experimental Wayland Support Planned for Linux Mint 21.3
• KDE Plasma 6 Sets Release Date
• Gnome Developers in Discussion to End Support for X.Org

12	 Kernel News
• Avoiding Bloat in the Kernel That Does Everything
• Particularly Odd Occurrences of Stardust

32	 Distro Walk – Immutable Distros
Immutable distributions offer a layer of added security.
Bruce explains how immutable systems work and discusses
their benefits and drawbacks.

16	 Science on a Crypto Rig
Could a once-impressive Bitcoin mining rig have a second
life in scientific computing?

22	 Data Science Methods
We tour some important tools for gaining insights from
mountains of data.

26	 R for Science
The R programming language is a universal tool for data
analysis and machine learning.

IN-DEPTH

COVER STORIES

NEWS

REVIEWS

26	 R for Science
This easy-to-learn language
comes with powerful tools
for data analysis.

38	 Acoustic Keyloggers
Sneaky tools that gather
information from the sound
of typing.

54	 PyScript
Versatile solution for
putting Python in a browser.

65	 Teaming NICs
Bundle your network
adapters to speed up remote
access.

69	� RPi Flight Simulator
Interface
Explore the I2C interface with
this high-flying maker project.

90	 Waydroid
Access Android apps from
your Linux desktop.

36	 AlmaLinux
Recent policy changes at Red Hat have upturned the RHEL
clone community. AlmaLinux charts a new path by shifting
to binary compatibility and away from being a
downstream RHEL build.

38	 Acoustic Keyloggers
Is someone listening in on your typing? Learn more about
how acoustic keyloggers work.

46	 Command Line – neofetch
Display information about your hardware, operating
system, and desktop in visually appealing output.

48	 datamash
This data processor for your scripts makes long, complex
calculations simple.

54	 PyScript
Use your favorite Python libraries on client-side web
pages.

60	 Programming Snapshot – Go CGI Scripting
Mike Schilli steps on the scale every week and records his
weight fluctuations as a time series. To help monitor his
progress, he writes a CGI script in Go that stores the data
and draws visually appealing charts.

65	 Teaming NICs
Combining your network adapters can speed up network
performance – but a little more testing could lead to better
choices.

4 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

69	 RPi Flight Simulator Interface
A Raspberry Pi running Linux with a custom I2C card and a
small power supply provides an interface for a real-time
flight simulator.

74	 BCPL
The BCPL procedural structured
programming language is
fast, reliable, and efficient,
offering a wide range of
software libraries and
system functions.

79	 Welcome
This month in Linux Voice.

80	 Doghouse – What is Fun?
This month maddog writes about what makes free
software fun for him.

81	 Compressing Files with RAR
The non-free RAR compression tool offers some
benefits you won’t find with ZIP and TAR.

84	 FOSSPicks
This month Graham looks at osci-render, Spacedrive,
internetarchive, LibrePCB 1.0.0, and more!

90	 Tutorial – Waydroid
Waydroid brings Android apps to the Linux desktop in
a simple and effective way.

MakerSpace

@linux_pro

@linuxpromagazine

Linux Magazine

@linuxmagazine

SEE PAGE 6 FOR DETAILS

TWO TERRIFIC DISTROS

DOUBLE-SIDED DVD!

95	 Back Issues
96	 Events

97	 Call for Papers
98	 Coming Next Month

Scientific
Computing
A crypto mining rig is built for math.
Can an old rig find a second life
solving science problems? That all
depends on the problem. Also this
month, we explore a few popular
data analysis techniques and stir up
some analysis of our own with the R
programming language.

5LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

Defective discs will be replaced. Please send an email to subs@linux-magazine.com.

Although this Linux Magazine disc has been tested and is to the best of our knowledge free of malicious software and defects, Linux Magazine
cannot be held responsible and is not liable for any disruption, loss, or damage to data and computer systems related to the use of this disc.

Kubuntu 23.10 and Fedora 39
Two Terrific Distros on a Double-Sided DVD!

Kubuntu 23.10
64-bit

Kubuntu is the Ubuntu variant that comes with the
KDE desktop. The latest release, codenamed Mantic
Minotaur, ships with KDE 5.27. The Kubuntu team
says the Kubuntu 5.27 release “brings massive
improvements to the desktop and all its tools.”
Plasma comes with a new configuration wizard, as
well as “a window tiling system, a more stylish app
theme, cleaner and more usable tools, and widgets
that give you more control over your machine.”
Included in the release are major updates to Krunner,
the Discover software manager, and many of
Plasma’s most popular panels, trays, and widgets,
such as the digital clock and color picker.

The Ubuntu base underneath Kubuntu comes with
Linux kernel 6.5, in addition to GCC 13.2.0 and
several other updates to developer tools. Expert
users can also choose the experimental ZFS
filesystem and TPM-based disk encryption.

Fedora 39
64-bit

Fedora 39 marks the 20th year of Fedora releases. As
a mature operating system, Fedora 39 has few major
changes, but it does offer the first look at many small
enhancements to performance and the user experience
that will be used in CentOS Stream and Red Hat Enter-
prise Linux. However, a previously announced web-
based installer program has been delayed until Fedora 40.

Meanwhile, Fedora 39 offers the usual upgrades in the
kernel and standard desktop applications such as Libre-
Office and Gnome Boxes. Among the performance en-
hancements are default hardware-accelerated video
decoding, multithreaded thumbnails for images, and
improved search performance in Gnome and the file
manager. Users may also notice a color-coded Bash
prompt, as well as enhancements contained in Gnome
45, such as a more detailed workspace window and a
PipeWire-based camera app, a rewritten Image Viewer
app, and new desktop widgets. Such changes continue
Fedora’s long tradition of a user-friendly experience
suitable for all levels of users.

+

6 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

DVD
This Month’s DVD

08	 • �AlmaLinux Will No Longer
Be “Just Another RHEL
Clone”

	 • �elementary OS 8 Has a
Big Surprise in Store

09	 • �OpenELA Releases
Enterprise Linux Source
Code

	 • �StripedFly Malware
Hiding in Plain Sight as
a Cryptocurrency Miner

	 • �More Online

10	 • �Experimental Wayland
Support Planned for
Linux Mint 21.3

	 • �Window Maker Live
0.96.0-0 Released

	 • �KDE Plasma 6 Sets
Release Date

11	 • �Fedora Project and
Slimbook Release the
New Fedora Slimbook

 	 • �Gnome Developers in
Discussion to End Support for
X.Org

 �
AlmaLinux Will No Longer Be “Just Another
RHEL Clone”

As my favorite band, Rush, once said, in Circumstances, “plus ça change, plus c’est
la même chose.” In other words, the more that things change, the more they stay
the same.

But this time around, AlmaLinux isn’t happy with staying the same… especially
with regards to remaining in lockstep with Red Hat Enterprise Linux (RHEL).

With the upcoming release of AlmaLinux 9.3, those who have become fans of the
distribution should expect change. This new release will not rely on RHEL Linux
source code. Instead, AlmaLinux 9.3 is built from the CentOS Stream repositories,
which is upstream from RHEL.

What does this mean for users? AlmaLinux 9.3 will most likely not change all that
much. The distribution will continue supporting x86_64, aarch64, ppc64le, and
s390x architectures and will likely no longer release days after RHEL.

According to benny Vasquez (https://almalinux.org/blog/future-of-almalinux/),
AlmaLinux OS Foundation Chair, “For a typical user, this will mean very little change
in your use of AlmaLinux. Red Hat-compatible applications will still be able to run on
AlmaLinux OS, and your installs of AlmaLinux will continue to receive timely security
updates.”

“The most remarkable potential impact of the change is that we will no longer be
held to the line of ‘bug-for-bug compatibility’ with Red Hat, and that means that we
can now accept bug fixes outside of Red Hat’s release cycle,” Vasquez continues.
“While that means some AlmaLinux OS users may encounter bugs that are not in
Red Hat, we may also accept patches for bugs that have not yet been accepted
upstream or shipped downstream.”

AlmaLinux 9.3 is now available to download (https://almalinux.org/get-almalinux/).

 �elementary OS 8 Has a Big Surprise in Store
Elementary OS has long been a favorite of mine. For years it was my go-to Linux
distribution, which came to a halt when I purchased my first System76 Thelio desk-
top. Even so, I’ve continued to admire from afar the work that goes into the OS.

And with the upcoming release, the development team plans to finally shift to the
Wayland display server by default.

This has been a long time coming, because Wayland is far superior and more
secure than X.Org.

Wayland isn’t the only change coming to elementary OS 8. According to the
team’s recent blog (https://blog.elementary.io/lets-talk-os-8/), version 8 of the OS
will also include the continued transition to GTK 4.

So far, the Captive Network Assistant, Initial Setup, and Videos app have already
made the transition (in their respective development branches), and the port for the
AppCenter is almost done.

The System Settings app and the indicator area will also see some major changes,
making them both more modern and responsive. In addition, the development team

8 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

THIS MONTH’S NEWS

NEWS
Updates on technologies, trends, and tools

https://almalinux.org/blog/future-of-almalinux/
https://almalinux.org/get-almalinux/
https://blog.elementary.io/lets-talk-os-8/

is considering an immutable version of elementary OS, adding Pipewire, replacing
the onscreen keyboard, and even reevaluating the systemd boot.

Of course, not everything will make it into version 8, but it looks like the team has
their work cut out for them.

If you’d like to get early access to daily builds, you can do so by becoming an
elementary OS sponsor on GitHub (https://github.com/sponsors/elementary).

 �
OpenELA Releases Enterprise Linux
Source Code

OpenELA was formed by CIQ (the company behind Rocky Linux), Oracle, and SUSE
with a singular purpose: “... to encourage the development of distributions compatible
with Red Hat Enterprise Linux (RHEL) by providing open and free enterprise Linux
source code.” And the initial release of the OpenELA source code is now available
(https://github.com/openela-main).

But why is this happening? According to CIQ (https://ciq.com/blog/ciq-oracle-and-
suse-launch-openela/), “The decision to establish OpenELA wasn’t made in isolation.
It was a direct answer to the challenges posed by Red Hat’s recent policy shifts. At
CIQ, we’ve always believed in the power of collaboration and open access.”

The site continues, “By teaming up with Oracle and SUSE, we’ll be able to provide
the community with the tools, resources, and most importantly, the source code they
need through OpenELA. With OpenELA, both upstream and downstream communities
can fully leverage the potential of open source, from independent upstream projects
through the delivery of compatible and standards-based Enterprise Linux derivatives.”

The code (found at the prior OpenELA GitHub page link) contains all of the basic
packages for building an Enterprise Linux OS. Keep in mind, however, that the code is
still very much a work in progress and some of the code has yet to be made public
(due to OpenELA's continued removal of all Red Hat branding/trademarks).

At the moment, both Oracle and SUSE are planning on releasing their enterprise
distributions based on OpenELA, and the Rocky Linux Software Foundation is
considering the same.

 �
StripedFly Malware Hiding in Plain Sight
as a Cryptocurrency Miner

Attention Linux Users: A malicious framework has been active for five years and has
been incorrectly classified as a Monero cryptocurrency miner.

StripedFly uses very sophisticated TOR-based methods to keep the malware hid-
den and uses worm-like capabilities to spread its nasty payload from Linux machine
to Linux machine (or Linux to Windows and vice versa).

No one is certain if StripedFly is being used for monetary purposes or straight-up
cybersecurity attacks (for information gathering). What is clear is that it’s an ad-
vanced persistent threat (APT) type of malware.

The earliest known version of StripedFly was identified in April 2016 and, since
then, it has infected more than a million systems. The StripedFly payload features a
customized TOR network client that works to obfuscate communication to a C2
(command and control) server, as well as the ability to disable SMBv1 and spread to
other hosts via SSH and EternalBlue.

When StripedFly infects a Linux system, it is named sd-pam and uses both
systemd services and a special .desktop file to keep it persistent. It also modifies
various Linux startup files such as /etc/rc*, .profile, .bashrc, and inittab.

You can read Kaspersky’s in-depth analysis of StripedFly at https://securelist.com/
stripedfly-perennially-flying-under-the-radar/110903/ . At the moment, patches to
mitigate against StripedFly have yet to be released for Linux, but you can be certain
your distribution of choice will be releasing the fix as soon as it is made available.

In the meantime, do everything you can to avoid phishing or visiting known mali-
cious websites, keep your systems up to date, and use a password manager.

ADMIN HPC
http://www.admin-magazine.com/HPC/

Managing Storage with LVM
• Jeff Layton
Managing Linux storage servers with the
Linux Logical Volume Manager.

ADMIN Online
http://www.admin-magazine.com/

Cost Management for Cloud Services
• Holger Reibold
Cost management for clouds, containers, and
hybrid environments tends to be neglected
for reasons of complexity. The open source
Koku software shows some useful approaches
to this problem, although the current version
still has some weaknesses.

Help Desk with FreeScout
• Holger Reibold
The free version of FreeScout offers all the
features of a powerful and flexible help desk
environment and can be adapted to your
requirements with commercial add-ons.

How to Query Sensors for Helpful Metrics
• Andreas Stolzenberger
Discover the sensors that already exist
on your systems, learn how to query their
information, and add them to your metrics
dashboard.

Linux Magazine
www.linux-magazine.com

Linux News

9

NEWS

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

MORE ONLINE

https://github.com/sponsors/elementary
https://github.com/openela-main
https://ciq.com/blog/ciq-oracle-and-suse-launch-openela/
https://ciq.com/blog/ciq-oracle-and-suse-launch-openela/
https://securelist.com/stripedfly-perennially-flying-under-the-radar/110903/
https://securelist.com/stripedfly-perennially-flying-under-the-radar/110903/
http://www.admin-magazine.com/HPC/
http://www.admin-magazine.com/

Get the latest news
in your inbox every
week

Subscribe FREE
to Linux Update
bit.ly/Linux-Update

 �
Experimental Wayland Support Planned
for Linux Mint 21.3

Although distributions such as Ubuntu and Fedora have fully committed to Wayland
(and are already shipping releases with it as the default display server protocol),
Linux Mint is a bit behind in the migration to Wayland.

Even with X.Org still suffering from numerous shortcomings and security issues,
some distributions have hesitated to make the switch. That’s understandable, be-
cause there are some desktop environments and even applications that have yet to
fully support Wayland.

That should change soon, because the Linux Mint team will release version 21.3
with experimental support for Wayland.

Before you get too excited, Wayland will not be the default X server on Linux Mint
21.3. Instead, users can select the Wayland session from the login screen.

It’s also important to understand that Wayland won’t be fully supported in 21.3,
because it’s not as stable on Mint as it is on X.Org. Do keep in mind that Wayland
does have issues with NVIDIA cards, so your mileage may vary should you desire
to test the new Wayland session.

Because this is Linux, for anyone who wants to keep tabs on the Linux Mint/Way-
land progress, you can check out the Trello board that is being used for the project,
https://trello.com/b/HHs01Pab/cinnamon-wayland . You can also read more about
this on the official Linux Mint blog (https://blog.linuxmint.com/?p=4591).

 �Window Maker Live 0.96.0-0 Released
Window Maker Live is alive and well and the new release, 0.96.0-0, is an updated
build of the Debian-based operating system.

Based on Debian 12.2, the new Window Maker Live release includes kernel 6.4.4 and
nearly the full range of GNUstep applications that are available via Debian Bookworm.

In this new release, the Window Maker root menu has been bolstered with a new
layout that includes a comprehensive listing of released programs, which are acces-
sible from the top-level GNUstep Apps entry.

As far as updated packages, the biggest update comes in the way of Window
Maker, which – like the Window Maker Live release number – is 0.96.0-0. This latest
release features hot corners, more configurable actions in WPrefs, libXRes as an
optional dependency, and support for _NET_WM_FULLSCREEN_MONITORS.

You’ll also find emacs 29.1, pcmanfm replaced with pcmanfm-qt, Greek added as
a supported language, gtk2-nocsd removed, and basic printer support has been
added via cups-pdf and system-config-printer.

In addition to the Claws Mail email client, you’ll find GNUmail has become avail-
able and the default web browsers are Pale Moon and Surf.

You can download the latest version of Window Maker Live from Sourceforge
(https://sourceforge.net/projects/wmlive/files/wmlive-bookworm_0.96.0/). Read
the changelog (https://downloads.sourceforge.net/project/wmlive/wmlive-book-
worm_0.96.0/ChangeLog) and the What’s New documents (https://downloads.source-
forge.net/project/wmlive/wmlive-bookworm_0.96.0/WHATS_NEW) to find out more.

 �KDE Plasma 6 Sets Release Date
February 28, 2024. Mark your calendars because that’s the official date the KDE
team has set for the release of KDE Plasma 6.0.

According to the official KDE release schedule (https://community.kde.org/Sched-
ules/February_2024_MegaRelease), February 21 is the private tarball release, and
February 28 is the official public release, which includes KDE Gear 24.02.0, KDE
Plasma 6.0, and KDE Frameworks 6.0.

Some of the work that has been completed includes custom ordering for
KRunner search results, printers KCM rewritten in QML, double-click by default,
tap-to-click by defaults, and icons throughout Plasma now come from system-
wide icon theme.

10 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

Linux News

NEWS

https://trello.com/b/HHs01Pab/cinnamon-wayland
https://blog.linuxmint.com/?p=4591
https://sourceforge.net/projects/wmlive/files/wmlive-bookworm_0.96.0/
https://downloads.sourceforge.net/project/wmlive/wmlive-bookworm_0.96.0/ChangeLog
https://downloads.sourceforge.net/project/wmlive/wmlive-bookworm_0.96.0/ChangeLog
https://downloads.sourceforge.net/project/wmlive/wmlive-bookworm_0.96.0/WHATS_NEW
https://downloads.sourceforge.net/project/wmlive/wmlive-bookworm_0.96.0/WHATS_NEW
https://community.kde.org/Schedules/February_2024_MegaRelease
https://community.kde.org/Schedules/February_2024_MegaRelease

In addition, you’ll find support for automatic bug reporting in DrKonqi, autostart
KCM shows details about entries, no more chunky page footers in System Settings,
completely reorganized sidebar in System Settings, smoother mouse wheel scroll-
ing in apps based on QtQuick, and the floating panel will be now the default.

The biggest change, however, is that Wayland will be the default graphics
stack (over X.Org). One nice touch that has been added is that distributions can
now customize the first page in the Welcome Center.

Of course, there will also be the usual bug fixes and security updates.
There will also be a new task switcher for KDE Plasma, making it much easier for

users to multitask.
You can read all about the upcoming changes to KDE Plasma in Nate Graham’s

official blog (https://pointieststick.com/2023/05/11/plasma-6-better-defaults/).

 �
Fedora Project and Slimbook Release the
New Fedora Slimbook

The new Fedora Slimbook is a sleek ultrabook that easily looks like it could have
slipped out of the Apple factory.

It’s a 3.3-pound notebook with a 16" 2560 X 1600 px high-res display (with a 90Hz
refresh rate powered by an NVIDIA RTX 3050 Ti GPU, an 82Wh battery, an Intel
Core 17-12700H CPU (with 14 cores and 20 threads), and the Gnome desktop envi-
ronment to make interacting with the hardware as user friendly as it gets.

As for the ports, you’ll find 1 USB-C Thunderbolt, 1 USB-C with DisplayPort, 1
USB-A 3.0, 1 HDMI 2.0, 1 AC, 1 Kensington Lock, 1 SD card reader, and a 3.5mm
combo mic/headphone jack.

You can configure RAM from 16GB to 64GB, internal storage from 500GB to 2TB
NVMe (and even secondary storage from 500GB to 2TB), and add RAID 0 or 1.

The base price of the Fedora Slimbook starts at EUR1,799. A fully configured ver-
sion can run up to EUR3,156.

Assembly time is one week and the devices are available for purchase now. Learn
more on the product website (https://slimbook.es/en/store/slimbook-executive/fe-
dora-slimbook-16-comprar).

 �
Gnome Developers in Discussion to End
Support for X.Org

In this merge request (https://gitlab.gnome.org/GNOME/gnome-session/-/merge_
requests/98) the Gnome development team stated, “This is the first step towards
deprecating the X11 session; the gnome-xorg.desktop file is removed, but the X11
functionality is still there so you can restore the X11 session by installing the file in
the appropriate place on your own.”

That was then followed by the suggestion to remove the rest of the X11 session
code for the next cycle, which could then be followed by removing the X11 code
altogether.

This makes perfect sense, because X11 has been getting less and less testing
over the past few years and Wayland development continues to go full steam. On
top of that, Wayland is far more secure than X11 and offers features better suited
for modern displays and interfaces.

Of course, not every developer is keen on dropping X11 so soon. One commenter
in the thread mentioned how Wayland isn’t ready for graphics professionals (be-
cause it has yet to implement basic color management).

However, the Gnome team isn’t pulling the plug on X11 just yet. This proposal
only removes one 8-line text file that can be added back if a user wants to continue
with X11.

Removing support for X11 is an inevitability because Wayland is the future of
the Linux desktop. Chances are good that X11 will be fully deprecated by the end
of 2024.

Linux News

11LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

NEWS

https://pointieststick.com/2023/05/11/plasma-6-better-defaults/
https://slimbook.es/en/store/slimbook-executive/fedora-slimbook-16-comprar
https://slimbook.es/en/store/slimbook-executive/fedora-slimbook-16-comprar
https://gitlab.gnome.org/GNOME/gnome-session/-/merge_requests/98
https://gitlab.gnome.org/GNOME/gnome-session/-/merge_requests/98

12 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

NEWS
Kernel News

“If you have a hard time figuring out
what the eventfs entries are, maybe you
should just have made ‘iterate_shared’
show them, and then you could use fancy
tools like ‘ls’ to see what the heck is up in
that directory?”

Steven replied that he hadn’t actually
copied the code from the /proc filesys-
tem, though he acknowledged there
were similarities. He said, “I tried to look
at how /proc does things and I couldn’t
really use it as easily, because proc uses
its own set of ‘proc_ops’, and I had some
different requirements.”

But in terms of Linus’s suggestion of a
simpler way to see the EventFS entries,
Steven replied, “I was more interested in
what did not exist than what existed. I
wanted to make sure that things were
cleaned up properly. One of my tests that
I used was to do a: find /sys/​kernel/​trac-
ing/​events, and then run my ring_buffer
memory size stress test (that keeps in-
creasing the size of the ring buffer to
make sure it fails safely when it runs out
of memory). Then I check to make sure
all the unused dentries and inodes were
reclaimed nicely, as they hang around
until a reclaim is made.”

However, Steven saw which way the
wind was blowing and didn’t intend to
get blood on his sword over a potentially
useful debugging patch. He asked, “Are
you entirely against this file, or is it fine
if it’s just wrapped around an
CONFIG_EVENTFS_DEBUG?”

Linus explained:
“I think [it’s] extra code that we’d carry

around – probably for much too long –
with absolutely _zero_ indication that it’s
actually worth it.

“Not worth asking people about, but
also not worth carrying around.

“You worry about bugs in it now, be-
cause it’s new code. That’s normal. That
doesn’t make your debug interface worth
any kind of future.

“Keep it around as a private patch.
Send it out to people if there are actual
issues that might indicate this debug
support would help. And if it has
shown itself to be useful several times,

Avoiding Bloat in the
Kernel That Does
Everything
Sometimes prospective features are use-
ful, and sometimes they’re not. Some-
times they’re useful, but only to a very
specific set of users that somehow strad-
dle the divide between first- and second-
class citizens. These special users are the
kernel developers themselves.

Steven Rostedt recently posted a patch
that would generate a permanent file in
the TraceFS filesystem. The file would
identify the directory entries (dentries)
and their reference counts, for dynamic
file creation in the EventFS filesystem.
Steven pointed to a recent debugging
session where part of the debugging pro-
cess involved creating such a file. He felt
it would be useful for future debugging
to have such a file available by default.

There followed a fascinating exchange
between Linus Torvalds and Steven.
Linus’s take on the situation was that
“this is neither a bug-fix, nor does it
seem to make any sense at all in the
main tree. This really feels like a ‘tempo-
rary debug patch for tracing
developers’.”

Steven replied that it did seem to be gen-
erally useful, because “it can be used to
see what’s happening internally.” He said
he’d wrap the feature in an #ifdef state-
ment, so that developers would be able to
use it and other similar resources in the fu-
ture for easy access to filesystem internals.

But Linus reiterated that this was not a
feature he wanted in the kernel. He said:

“Honestly, you copied the pattern from
the /proc filesystem.

“The /proc filesystem is widely used
and has never had this kind of random
debugging code in mainline.

“Seriously, that eventfs_file thing is not
worthy of this kind of special debug code.

“That debug code seems to be ap-
proaching the same order of size as all
the code eventfs_file code itself is.

“There’s a point where this kind of
stuff just becomes ridiculous. At least
wait until there’s a *reason* to debug a
simple linked list of objects.

Zack’s Kernel News

Chronicler Zack Brown reports
on the latest news, views,
dilemmas, and developments
within the Linux kernel
community.
By Zack Brown

The Linux kernel mailing list comprises
the core of Linux development activities.
Traffic volumes are immense, often
reaching 10,000 messages in a week, and
keeping up to date with the entire scope
of development is a virtually impossible
task for one person. One of the few brave
souls to take on this task is Zack Brown.

Author

Kernel News

13LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

NEWS

at that point you have an argument for
the code.

“As it is, right now I look at that code
and I see extra BS that we’ll carry around
forever that helps *zero* users, and I find
it very questionable whether it would
help you.

“And if you really think that people
need to know what the events exist in
eventfs, then dammit, make ‘readdir()‘
see them. Not some stupid specialty
debug interface. That’s what filesystems
have readdir for.”

But Linus replied to himself a couple
of hours later, with a slightly different
take. He said:

“Alternatively, if you have noticed that
it’s just a pain to not be able to see the
data, instead of introducing this com-
pletely separate and illogical debug inter-
face, just say ‘ok, it was a mistake, let’s
go back to just keeping things in dentries
since we can _see_ those’.

“Put another way: this is all self-in-
flicted damage, and you seem to argue
for this debug interface purely on ‘I can’t
see what’s going on any more, the old
model was really nice because you could
see the events’.

“To me, if that’s really a major issue,
that just says ‘ok, this eventfs abstraction
was mis-designed, and hid data that the
main developer actually wants’.

“We don’t add new debug interfaces
just because you screwed up the design.
Fix it.”

Steven remarked with a wry smile,
“The entire tracing infrastructure was
created because of the ‘I can’t see what’s
going on’ ;-) Not everyone is as skilled
with printk as you.”

He also explained the historical rea-
soning behind the current design, say-
ing, “The old eventfs model was too
costly because of the memory foot-
print, which was the entire objective of
this code patch. The BPF [Berkeley
Packet Filter] folks told me they looked
into use a tracing instance but said it
added too much memory overhead to
do so. That’s when I noticed that the
copy of the entire events directory that
an instance has was the culprit, and
needed to be fixed.”

So Steven felt the “design” Linus had
complained about was correct and didn’t
need to be “fixed.” But he added, “I get
your point. I will agree that this interface
will likely be mostly useful for the first

year or two after the new code is added.
But after a few years, we could delete it
too.” And in a subsequent email, he also
said, “I’ll keep the code around locally,
and if vfs ever changes and breaks this
code where this file helps in solving it,
I’ll then do another pull request to put
this file upstream ;-).”

And the thread ended there.
This was a short debate and probably

fairly low-cost, because it didn’t repre-
sent a huge amount of effort on Ste-
ven’s part – he simply packaged up
some debugging code that had recently
proven useful. So the rejection from
Linus didn’t cost Steven very much. But
it’s very interesting to me personally the
way Linus balances the needs of devel-
opers against the needs of the rest of us.
The Linux kernel project is completely
dependent on the contributions of de-
velopers like Steven, while the rest of
us – aside from possibly submitting a
bug report once in awhile – are simply
the beneficiaries. But as far as Linus is
concerned, Steven’s bit of debugging
code, benefitting only developers, had
no place in the kernel, even as a rela-
tively temporary aid until the feature it
helped had stabilized. It’s a fascinating
balancing act on Linus’s part, intended
to keep the Linux kernel – an operating
system that supports virtually every
piece of computer hardware on the
planet – from becoming bloated with
extra code that might make it more dif-
ficult to maintain.

Particularly Odd
Occurrences of Stardust
Recently, a Spectre variant 1 (V1) vul-
nerability may or may not have appeared
in the Linux kernel. Spectre V1 is a bi-
zarre vulnerability that takes advantage
of CPU optimizations that make a rea-
sonable guess at the result of condition-
als, so it can begin to execute code along
the path that’s most likely to be taken
after the conditional is performed. If it
guesses right, it keeps those calcula-
tions; otherwise, it abandons them and
starts again along the proper path. And
because its guess is generally pretty
good, the CPU tends to save time this
way and increases overall performance.

The problem is that for those wrong
guesses, the unneeded calculations
aren’t really abandoned at all – they still
leave traces of data behind them (e.g.,

14 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

Kernel News

NEWS

with Alexei that the attacker would not
be able to access the data that worried
Luis, he felt that the attacker would in-
deed have access to parts of those
memory addresses.

The reason you want to keep Linux
kernel memory addresses out of the
hands of an attacker is because the ad-
dresses let the attacker make guesses
about the overall layout of the kernel in
system memory. The kernel relies on
Kernel Address Space Layout Random-
ization (KASLR) to prevent such access
for this reason. This feature loads the
kernel into a random place in system
memory, specifically to prevent attack-
ers from knowing where a given part of
the system is located, in order to target
that part for an attack. Daniel’s point
was that by exposing even a portion of
those kernel addresses, the kernel
would allow the attacker to mitigate the
effect of KASLR protections. So the vul-
nerability wouldn’t give the attacker di-
rect access to sensitive kernel data like
passwords, but it would help the at-
tacker identify other potential exploits
that they might attempt.

Alexei, however, was still not con-
vinced. He felt that the attacker would
still not be able to identify the data it
was accessing. Just as the attacker
couldn’t access passwords, the attacker
would not be able to access those kernel
addresses.

However, Luis was not convinced by
Alexei being unconvinced. He felt that
he had identified aspects of Spectre V1’s
basic vulnerability – things that could in-
deed be exploited. Also, in terms of
Alexei’s response to Daniel’s specific
case, Luis countered, “It is true that this
is not easily possible using the method
most exploits use, at least to my knowl-
edge (i.e., accessing the same address
from another core). However, it is still
possible to evict the cacheline with skb-
>data/​data_end from the cache in be-
tween the loads. […] For a CPU with
64KiB of per-core L1 cache all 64-byte
cachelines can be evicted by iterating
over a 64KiB array using 64-byte incre-
ments, that’s only 1k iterations.”

Luis also posted some actual assem-
bly code that he felt would leak data in
this case.

Alexei acknowledged that “I have to
agree that the above approach sounds
plausible in theory and I’ve never seen

data such as passwords), which mali-
cious programs can read and use.

When Spectre V1 was discovered, the
Linux developers patched the kernel to
prevent those data traces from lingering
or being created in the first place. How-
ever, to maintain security, it’s important
that new kernel features and other
patches avoid re-exposing those things.

Luis Gerhorst recently identified a
patch that had previously gone into the
Linux kernel as potentially re-exposing
the Spectre V1 vulnerability under cer-
tain circumstances. The patch had al-
lowed the kernel to compare the pointers
used to access packets of data sent
across a network – and specifically to
allow the size of the data packets to be
variable. According to Luis, it was the
variability of the packet size that let
Spectre V1 rear its head again.

If the packets had a fixed size, then
the kernel could simply check the
bounds. But with the variable packet
size, hostile code could load more data
beyond the packet itself, which would
then be exposed when the kernel ran its
comparison and the CPU optimized that
conditional.

But it’s not as clear as all that!
Alexei Starovoitov looked over Luis’s

argument and concluded that, in fact,
there was no way for an attacker to ac-
tually get access to useful data in this
particular situation. The attacker, Alexei
said, could indeed expose sensitive
data. However, because they would not
have control over the various pointers
involved, they would not be able to ac-
tually read that data in such a way as to
know what data they were reading. Ex-
posing the data was not enough! As
Alexei put it, “the attack cannot be re-
peated for the same location. The at-
tacker can read one bit 8 times in a row
and all of them will be from different lo-
cations in the memory. Same as read-
ing 8 random bits from 8 random loca-
tions. Hence I don’t think this revert is
necessary. I don’t believe you can craft
an actual exploit.”

Daniel Borkmann agreed with Alexei,
but he felt there could be additional se-
curity vulnerabilities to take into ac-
count. Specifically beyond the end of a
given networking data packet, the ker-
nel stored a data structure that con-
tained memory addresses used by the
kernel. And although Daniel agreed

anyone propose to mispredict a branch
this way.” But he added that this proba-
bly “means that no known speculation
attack was crafted. I suspect that’s a
strong sign that the above approach is
indeed a theory and it doesn’t work in
practice.”

Alexei concluded sternly, “So I will in-
sist on seeing a full working exploit be-
fore doing anything else here. It’s good
to discuss this cpu speculation concerns,
but we have to stay practical. Even re-
moving bpf from the picture there is so
much code in the network core that
checks packet boundaries. One can find
plenty of cases of ‘read past skb->end’
under speculation and I’m arguing none
of them are exploitable.”

Luis posted code that leaked some
otherwise inaccessible data via Spectre
V1. But he also acknowledged to Alexei,
“However, you are right in that there
does not appear to be anything ex-
tremely useful behind skb->data_end,
destructor_arg is NULL in my setup but I
have also not found any code putting a
static pointer there. Therefore if it stays
like this and we are sure the allocator in-
troduces sufficient randomness to make
OOB reads useless, the original patches
can stay. If you decide to do this I will be
happy to craft a patch that documents
that the respective structs should be con-
sidered ‘public’ under Spectre v1 to
make sure nobody puts anything sensi-
tive there.”

The discussion ended there.
It’s still unclear whether an actual use-

ful exploit for either Luis’s or Daniel’s
cases exists. But it’s also true that Alex-
ei’s approach to this problem seems to
follow Linus Torvalds’s general principle
that security fixes must address actual
exploits, rather than people simply im-
plementing speculative protections that
might not actually be needed.

Security is an inherently nightmarish
topic in software development, in which
strange dreamscapes continually seem to
turn the simplest truths on their heads.
Whatever the most obvious assumption
might be, it also might be exactly where
a sudden vulnerability will be revealed.
Many strange features and constraints in
the Linux kernel boil down to the need
to avoid particular vulnerabilities. And
the answer to many of the oddest ques-
tions in kernel development is often,
simply, security. nnn

a 1:1 extension of the slot or via an x1 plug-in card that simply
transmits the PCIe signal via an inexpensive USB 3 cable.

The PCIe bus, which has been around since 2003, can play
host to a number of components, from the WLAN board to the
graphics card. The speed of the PCIe bus has doubled with
each new version of the standard; the current version is 4.0. If
you take a look at a motherboard, it is clear that the slots have
different widths, which means that different numbers of PCIe
channels can connect to the card – from x1 (one channel) up to
x16 with 16 times more throughput. (You can also install an x1
card in an x16 slot and vice versa.) The slots are compatible
with each other up to PCIe 4.0; in other words, systems de-
signed for different versions can communicate with each other
via the standard of the lower version.

Power Supply
The power supply plays an important role in systems that need
to run continuously. The requirements are very high due to the
possibility that several graphics cards could experience peaks
simultaneously (after all, the tasks run in parallel). In just a
few months, you might discover that the electricity bill exceeds
the initial cost of the rig.

Mining rigs often use second-hand server power supplies to
reduce costs. A server power supply is powerful and very energy
efficient: Most achieve the 80 Plus Platinum efficiency rating
(more than 94 percent efficiency at 50 percent load) and are
often unbeatably cheap to run. However, this kind of power sup-
ply only gives you 12V and is therefore not suitable for the ATX-
based motherboards found on many common PCs [2] without
changes. It is easy to understand why the small PicoPSU power
converter board [3] has become popular, because it also sup-
ports other voltages. Replicas of the PicoPSU are also available
from various Chinese manufacturers. These boards are very pop-
ular, especially for home theater PCs or similar devices.

PicoPSUs and their replicas come with some pitfalls that you
need to watch out for. They mainly provide power on the 12V
rail, which they simply loop through from the power supply. If
the consumer requires other voltages, such as 3.3V or 5V (say,
for SSDs), the power supply could fall short. A look at the data-
sheet reveals a current of 6 amps – not really much, consider-
ing that a PCIe card is allowed to draw 3 amps from the 3.3V

D espite the steady increase in computing power from
one generation to the next, computers are rarely fast
enough for their users. Over the years, programmers
and PC vendors have found ways to speed them up. If

you know exactly how a computer will be used, you can design
it to maximize performance and minimize cost.

Crypto rigs are created with only one task in mind: to per-
form the arcane mathematical computations associated with
crypto mining. The crypto gold rush has led to a rapid evolu-
tion of the technology – a mining unit that was competitive a
few years ago might already be obsolete. For instance, a few
years ago, mining rigs made extensive use of Graphics Process-
ing Units (GPUs); in more recent years, Field Programmable
Gate Arrays (FPGAs) and then Application-Specific Integrated
Circuits (ASICs) have replaced graphics cards. Crypto mining
has also experienced a bit of a downturn recently due to envi-
ronmental fears and instability of the larger economy.

As a result of these and other factors, mining rigs are increas-
ingly ending up on the second-hand market, where you can
buy them relatively cheaply even if you are not a professional
user. Could one of these rigs serve another role?

Mining rigs make extensive use of GPUs, and GPUs are well
suited to scientific computing and machine learning. Several
GPUs in a single computer will boost the potential performance
many times over for a computation-intensive activity, such as
solving a large mathematical problem.

We decided to buy a used crypto mining rig and see how it
compares to a higher-end computation-focused commercial
system. This article summarizes our findings. First, however,
we’ll provide a little background on what you do (and don’t)
get when you invest in a used mining rig.

PCIe Versions
Most used mining rigs power regular graphics cards via Periph-
eral Component Interconnect Express (PCIe) [1]. If the board is
large enough, the rigs can be plugged in right next to each
other. There are also variants where the motherboard does not
offer the slots directly but outsources them to a PCIe back-
plane. Depending on the version of the motherboard, up to 18
cards can be addressed. They then no longer fit into a case but
are connected via extension cables (risers) – either actually as

Scientific computing with a crypto mining rig

Second Chance
Lots of retired Bitcoin mining computers are showing up on the second-hand
market for cheap. Could these once-impressive machines have a second life
in scientific computing or machine learning?

By Steffen Möller, Christian Dreihsig, Sebastian Hilgenhof, Malte Willert

COVER STORY

16 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

Science on a Crypto Rig

rail according to the standard. Since the motherboard also
needs some power itself, this is actually only enough for a sin-
gle PCIe card.

GPUs don’t cause problems because they convert the voltage
from the 12V line themselves and cause virtu-
ally no load on the 3.3V rail. But other cards
can quickly create a power squeeze. M.2 solid-
state drives (SSDs), for example, are only con-
nected to the 3.3V rail (M.2 only has 3.3V pins)
and can consume up to 10W under load – at
3.3V, this is half of the permissible power con-
sumption at 3 amps. This just goes to show
how quickly you can provoke a load-dependent
failure. SATA devices are also allowed to draw
up to 4.5 amps per rail.

If you are buying new components, choose a
motherboard and power supply that match each
other. But our focus is on budget used hard-
ware. The combination of inexpensive used
server power supplies and a PicoPSU is often
both cheap and fit for purpose.

If you are buying a used rig, keep in mind
what the hardware was once designed for.
Server hardware, for example, is not optimized
for quiet operation. In my case, both the fans of
the original mining rig and the fans of the re-
placement case were so loud that they were an-
noying even when I put them in a different
room and kept the door to the room closed. If
you think you can solve the noise problem by
installing the graphics cards into a normal PC
case, think again. In this case, the graphics
cards are passively cooled and dependent on
the airflow in the case.

CPU and Chipset
Mining hardware is usually radically cost-opti-
mized. The optimization typically starts with the
CPU. The CPU is not used for the actual mining,
so mining rigs often use an inexpensive, power-
saving processor like a Celeron and save their

budget for other more critical components. The mining rig we
used in our test had a small dual-core Intel CPU in a ball grid
array (BGA) package, which means it was soldered and could
only be replaced along with the motherboard. GPU mining rigs

Figure 1: The spartan test computer: Cost-optimization was the
top priority.

17LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

PCI switches are also available on the server boards, but the
total number of available PCI channels is higher due to the use
of two processors. Currently, AMD’s PCIe 4.0 standard offers a
technical advantage on both desktops and servers with twice
the transfer speed per channel and a higher number of chan-
nels provided by the processor.

The Test Candidate
We purchased a mining rig with a backplane and separate
motherboard at auction for EUR750. The system did not work
reliably at first. The power supply worked, but it was too loud
and smelled unhealthy. The eight installed NVIDIA P106-090
mining cards from 2018 with PCIe 1.1 x4 were OK. We treated
them to a new case, memory, motherboard, processor and, to
be on the safe side, a new power supply for another EUR350.

We wanted to compare the performance of this used mining
rig with a high-end professional system. The professional hard-
ware we chose for comparison was a 2020 system with eight
NVIDIA A100 cards and PCIe 4.0 x16. The cost for this profes-
sional system was more than EUR75,000, which was 100 times
more expensive than the mining rig we bought at auction.

GPU-focused systems are optimized for computation-inten-
sive operations, so we wanted to stay with that basic scenario
in our tests. We tested two different use cases:

usually have no more than 4GB RAM. Better graphics cards offer
the possibility to interconnect – NVIDIA calls this Scalable Link
Interface (SLI) or NVLink; CrossFireX is the AMD equivalent.
This interconnect feature allows multiple cards to act as a single
large board, reducing communication on the PCIe bus.

Cost optimization is also reflected in the case (Figure 1): The
test rig case is not much more than a galvanized steel box with
a few cutouts for fans (Figure 2). Preparations for cable rout-
ing, for example, were not needed because everything was
plugged into a backplane. If you are thinking about a potential
hardware conversion, you should get used to the idea of using
a drill, pliers, and a little creativity to work around the limita-
tions of the case.

The processors already provide the PCIe channels. The
motherboard distributes these channels to the slots – either di-
rectly or via a PCI switch in professional systems. This design
means that only a limited number of PCIe channels are avail-
able. A single card can access the full x16 bandwidth of the
PCIe channels. However, if there is another card in the slot next
to it, each card receives a maximum of x8, and this can drop to
x1 as you add more cards.

Motherboard descriptions often prove to be anything from
superficial to misleading when they refer to the physical width
of the slot instead of the number of channels feeding the card.

Figure 2: The case is little more than a galvanized steel box with some fan cutouts and everything plugged
into a backplane.

18 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

COVER STORY
Science on a Crypto Rig

•	 Scientific computing using the BOINC crowdsource comput-
ing platform [4]

•	 Machine learning with the PyTorch deep learning framework
[5] and a well-known test dataset to teach the system to dis-
tinguish between dog and cat images

A cheap used mining rig that sells for one percent of the cost
of an advanced computer system would be a big advantage,
but we were realistic. We had no illusions a EUR750 mining
rig would outperform the high-end commercial system in an
absolute sense. We were more curious about whether it was
competitive in delivering computing power per cost. In other
words, if an option delivers one tenth of the computing power
but it comes at only on one hundredth of the cost, there are
scenarios where it could be a viable alternative.

We were also aware that the different components of the
design would affect performance in different ways. The two
systems didn’t just have two different GPUs. The difference
between the PCIe 1.1 x4 bus and the PCIe 4.0 x16 bus also
seemed significant, as well as the differences in the CPUs.
For a few of the tests, we experimented with putting the
GPUs from the mining rig into the newer system to isolate
the GPU as a variable.

BOINC Benchmarks
We picked out three BOINC-based crowdsource projects that
support GPUs. Einstein@Home [6] uses data from the LIGO
gravitational-wave detectors, the MeerKAT radio telescope, the
Fermi Gamma-ray Space Telescope, as well as archival data from
the Arecibo radio telescope to look for spinning neutron stars
(often called pulsars). The professional system with eight A100
cards needed 300 seconds in this test. The mining rig took 2,000
seconds per work unit, which is more than six times as long, but
again, the professional system was 100 times more expensive.

Was the superior performance of the professional computer
due to the GPU or the faster processor with faster and wider
PCIe bus? To find out, we installed the P106-090 cards from the
mining rig into the professional system. Despite the faster pro-
cessor and the 4x instead of 1x PCIe channels, the P106-090
cards ran only one percent faster when installed on the faster
system. Einstein@Home allows multiple work units to share a
GPU. We would have expected that processing two work units
at once would lead to a performance advantage, but calculating
two jobs on one card also doubled the computing time, so it
did not yield an advantage.

The prime number search with PrimeGrid [7] requires virtu-
ally no CPU interaction with the cards (less than two percent
CPU load). The P106-090s of our test system required between
916 and 925 seconds (CudaPPSsieve) and about 4,500 seconds
(OCL_cuda_AP27). The A100s in the professional rig com-
pleted the task in about one tenth of the time in each case.

For the third BOINC test, we selected a benchmark program
for the Folding@home biomedical project [8] and launched it
simultaneously on several GPUs. The benchmark measures
how many nanoseconds of a process in nature the computer
can model within one day. With single precision, the mining
rig’s P106 GPUs managed 59 ns/​d when placed in the profes-
sional system, whereas the A100 achieved 259 ns/​d. With Dou-
ble Precision (not supported in the hardware on the P106) it
was 159 ns/​d on the A100, while the P106 achieved just 3 ns/​d.

PyTorch
PyTorch is an open source machine learning framework. We
put together a manageable script that uses a neural network to
classify images on a varying number of graphics cards (or just
on the CPU). To do this, the images must be transported to the
graphics cards and, if the results are distributed over several
cards, they also need to be merged again at the end. During
training, the models also need to be updated on all cards.

The CPU is not something you can do without in machine
learning projects with GPU support. On the contrary, it actu-
ally becomes more and more important as the number of
compute cores increases. It first prepares the data for the
GPU and then summarizes the GPU results. If you distribute
the workload over many GPUs, the processor can definitely
become the bottleneck for which the graphics units will
have to wait. How much the communication between GPU
and CPU can be reduced depends on the application. If the
data can be represented as a matrix and the application is
based on operations on matrices or between them, GPUs are
hard to beat.

We assumed for our study that the number of cards used
does not affect the quality of the predictions. We actually did
not pay any further attention to the quality of the prediction, as
it can depend on a variety of factors, such as the quality of the
training dataset or the size of the batches. We exclusively
looked at the number of images that could be trained or classi-
fied (evaluated) every second with the given hardware.

Analysis of the Results
The P106-090s only support PCIe 1.1 with x4 channels for com-
munication. In our mining rig with x1 risers, they were there-
fore only connected with PCIe 1.1 x1. In a PCIe 4.0 x16 envi-
ronment, the same cards can be addressed with four times the
throughput. The fact that the BOINC computing times hardly
changed when switching from the PCIe 1.1 x1 to PCI4.0 x16 on
the faster system reflected the fact that the projects we selected
use the GPU almost exclusively. In the style typical of BOINC,
these manageable computational jobs are designed to be com-
puted independently of each other – they do not need to be
synchronized with the computations on the neighboring GPU.

To our astonishment, the A100 cards could hardly exploit
their advantages in the BOINC test. Even the speed-up factor of
10 achieved in a prime number search seems low compared to
a factor of 100 if you compare the hardware price.

Although the mining rig might have been competitive in
computations per euro, the P106-090 (75W per card) is clearly
inferior to the maximum 250W per professional card in terms
of performance per consumed watt – after all, you would have
to spend between 475 and 750W for the same computing per-
formance with data-parallel requirements. However, in com-
mercial use, it is important to note that the real cost could be in
the longer wait time. Things you can compute in an hour on a
large card take a whole workday on a small one.

The machine learning test with PyTorch was different. The
small cards of the mining rig completely failed to process
larger batches, which specifically benefit from parallelization.
The weak bus connection in the rig and slow communica-
tion due to PCIe 1.1 ate up the advantage of parallelization
in the test.

19LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

COVER STORY
Science on a Crypto Rig

Conclusions
For data-parallel requirements like BOINC, the eight cards in
the mining rig roughly match the performance of a single pro
card, but cost less, even taking into account the higher power
consumption. For machine learning, however, a good, modern
graphics card with plenty of memory is preferable. With the
support of the 16-bit floating-point numbers frequently used in
machine learning compared to integer operations with 8- or

even only 4-bit width, the newer cards
extend their lead.

Cloud services are an interesting foot-
note for this study. Although not every
hosting service provider offers special
GPU computers yet, you can already find
offers with 8 and 16 cards. Prices vary
depending on the number and type of
GPUs selected. In some scenarios, you
might come up with a configuration
where the mining rig serves as a local in-
stallation that is useful for preparing
projects to run on faster systems in the
cloud, as long as you are allowed to
store the data in the cloud and the laten-
cies for data transfer are compatible with
the project goals. nnn

There were no big surprises in the test. Although the training
phase took longer than classifying the taught model, the rela-
tive times of the different hardware configurations matched.
We also tried neural networks with different sizes; this had an
effect on the maximum batch size, but with roughly equal rela-
tive speeds of the systems to each other. This is why we are
only showing the figures for training with the smallest model
in Figure 3.

Figure 3: The benchmark results for the machine learning test for image
classification.

[1]	� PCIe: https://​en.​wikipedia.​org/​wiki/​
PCI_Express

[2]	� ATX: https://​en.​wikipedia.​org/​wiki/​ATX

[3]	� PicoPSU: https://​www.​onlogic.​com/​
technology/​glossary/​picopsu/

[4]	� BOINC: https://​boinc.​berkeley.​edu/

[5]	� PyTorch: https://​pytorch.​org/

[6]	� Einstein@Home:
https://​einsteinathome.​org

[7]	� PrimeGrid:
https://​www.​primegrid.​com/

[8]	� Folding@home:
https://​foldingathome.​org

[9]	� MEGWARE GmbH:
https://​www.​megware.​com/​en/

Info

The authors would like to express their
special thanks to the HPC specialist MEG-
WARE GmbH [9]. The company provided
access to its test computers and installed
the P106-090 from the test rig into one of
its systems for direct comparison.

Info

nnn

20 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

COVER STORY
Science on a Crypto Rig

https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/ATX
https://www.onlogic.com/technology/glossary/picopsu/
https://www.onlogic.com/technology/glossary/picopsu/
https://boinc.berkeley.edu/
https://pytorch.org/
https://einsteinathome.org
https://www.primegrid.com/
https://foldingathome.org
https://www.megware.com/en/

A tour of some important data science techniques

Method in the

Madness
Data science is all about gaining insights from mountains of data.
We tour some important tools for the trade. By Tom Alby

lending has worked so far and what data has been collected
in this field – as well as whether that data is actually avail-
able – with a view to data protection requirements. In addi-
tion, data scientists need to be able to communicate their
findings. Storytelling is more useful than presenting infinite
rows of numbers, because the audience is likely to be made
up of non-mathematicians. The need to clearly explain the
findings frequently presents a challenge for less extroverted
data scientists.

Preparing the Data
What sounds simple in theory often requires time-consuming
data cleaning and transformation. Data is not always available
in the way you need it. For example, many algorithms require
numerical data to be extracted from non-numerical data.

To separate the data, the data scientist forms categories that
can be divided using either numerical distances or dummy
variables, where each occurrence of a characteristic (such as
male, female, and nonbinary) becomes a separate variable. As
a rule, one variable can be omitted. For example, in this data
set, someone can only be male if they are neither female nor

D ata is the new oil, and data science is the new refin-
ery. Increasing volumes of data are being collected, by
websites, retail chains, and heavy industry, and that
data is available to data scientists. Their task is to gain

new insights from this data while automating processes and
helping people make decisions [1]. The details for how they
coax real, usable knowledge from these mountains of data can
vary greatly depending on the business and the nature of the
information. But many of the mathematical tools they use are
quite independent of the data type. This article introduces you
to some of the methods data scientists use to squeeze insights
from a sea of numbers.

More than Just Modeling
The term data scientist evokes associations with math nerds,
but data science consists of far more than building and opti-
mizing models. First and foremost, it involves understanding a
problem and its context.

For example, imagine a bank wants to use an algorithm to
predict the probability that a borrower will be able to repay
a loan. A data scientist will first want to understand how

22 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

nonbinary. However, erroneous user input often results in data
points that could bump an algorithm off track. These data
points need to be identified and cleaned up.

The data scientist also looks for variables that are genuinely
relevant to the model. This is where the information gathered
during the understanding phase comes into play. In an explor-
atory data analysis, often in a Jupyter Notebook or similar, the
data scientist generates and documents the findings in order to
share them with colleagues (or at least ensure that the findings
are repeatable).

Choosing a Suitable Model
First and foremost, the choice of algorithm depends on the
task. If data capable of training an algorithm is available,
data scientists refer to this scenario as supervised learning.
For instance, if you have access to historical data on loan
defaults, you could use it to predict whether future borrow-
ers will repay their loans. The variable used for training is
often referred to as the target variable – in this example, this
is simply whether or not a loan has been repaid. Other ex-
amples would be classifications, whether or not a birthmark
is indicative of skin cancer, or whether a customer is a
fraudster.

Unsupervised Learning
If data exists but does not contain target variables, then it is
often a matter of finding a pattern in the data, for example, to
classify customers into segments. This type of machine learn-
ing is known as unsupervised learning. One of the most popu-
lar algorithms in unsupervised learning, judging from the num-
ber of tutorials on the subject, is k-means. The k-means algo-
rithm clusters the data (i.e., it breaks the data down into seg-
ments). Roughly described, this method first locates centroids
at the data points and then calculates the distances from the
data points to these
centroids.

The data points closest to
each of the centroids give you
the first clusters. You then
compute the actual centers of
these clusters. The result is
the new distances of the indi-
vidual data points to the cen-
ter points. Based on this, the
clusters re-sort. This process
is repeated until the centers
stop changing.

Figure 1 shows this ap-
proach. The number of seg-
ments is determined by the
value k, which must be speci-
fied. This raises the question
of the appropriate number;
the answer is provided by the
elbow test. The elbow test in-
volves running k-means with
different cluster sizes and
showing how much variance
there is within clusters for

the different values. Visualizing these variances typically cre-
ates a dent in the curve – the elbow, where you can read off the
optimal value for k.

Association Rules
Association rules, as used by stores to offer similar products,
are another popular example of unsupervised learning. “Cus-
tomers who purchased X often also look at Y” would be a typi-
cal application of association rules. Working with association
rules usually involves looking at items (e.g., a product in a
store) in the context of transactions, which can also be under-
stood as shopping carts or cash register receipts. The Apriori
algorithm is a popular approach because it requires less com-
putation. Apriori ignores rare items and also the transactions in
which they appear, which means that it has a far smaller data
volume to work through.

Rules with different characteristic values are created from the
remaining transactions, as a function of the parameters: Sup-
port shows how often a shopping cart occurs in comparison to
all shopping carts (other items can also exist in the shopping
cart). Confidence tells you how often an item appears when an-
other defined item is present. Lift indicates how much more
frequently a combination occurs than the independent items.
Rules that have a high lift and at the same time appear fre-
quently enough to be seen by users are of interest.

Supervised Learning
One of the simplest machine learning models is linear regres-
sion. Linear regression has been around since the 19th century
and it is a little like the “Hello World” of machine learning. Fig-
ure 2 shows the occurrences and prices of used SLR cameras
for a specific camera model. The more occurrences, the less a
used camera is likely to cost, as the data points also already in-
dicate. But how can you determine a fair price?

Figure 1: Visualization of a k-means clustering. First calculate the red center val-
ues for the black data points. Then, if necessary, redistribute the points to the
resulting clusters as a function of the distance to the respective center.

COVER STORY

23LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

Data Science Methods

dimensions to improve data separation – this
is known as the called kernel trick.

Naive Bayes is an algorithm that is not
based on distances. It is based on Thomas
Bayes’ theorem (published posthumously in
1763) and works with conditional probabili-
ties. The algorithm deals with the probability
of a case occurring (for example, default on a
loan), taking into account a certain condition
(the debtor has a negative credit report). How-
ever, things get a little more complicated, be-
cause there is typically not only one condition
but several; for example, whether the debtor
owns real estate, has an account with a bank,
and many other factors. These probabilities
are related to how often the cases occur over-
all (e.g., how often someone owns real es-
tate). By the way, the algorithm does not just
work with numbers but also with speech.
Some spam filters are also (but not exclu-
sively) based on the Naive Bayes algorithm.

In recent years, one algorithm in particular
has caused quite a stir, XG Boost. The XG
Boost algorithm comes from the family of
grading algorithms, hence its name, “Extreme
Grading.” It derives from the decision tree, a
machine learning algorithm popular for de-
cades due to its traceability. You first separates

data points based on the criterion in which they differ the
most. By combining multiple trees (an ensemble) and strong
and weak models (boosting), each tree learns from the mis-
takes of the previous tree (grading).

Reinforcement Learning is often seen as outside the cate-
gories of supervised and unsupervised because, in a sense,
it combines both approaches. Algorithms in this category
find their own learning strategies and are then rewarded by

In linear regression, you draw a line through the data points
and then measure the distances of the data points from the line
(residuals). The residuals are squared to get rid of negative
signs and then totaled. The better the line fits between the data
points, the lower the sum of squared distances. The regression
is done when you find the line with the lowest sum. Using this
regression line, it is now possible to read off which price is ap-
propriate for the used camera given a number of occurrences.

Support Vector Machines (SVMs) is another
technique that also works with distances and
lines. People started thinking about this algo-
rithm as early as in the 1930s and 1950s, but it
was not until the 1990s that SVMs made their
breakthrough. SVMs are often about classifica-
tion: Data points need to be broken down into
different classes. As with linear regression, a line
is drawn between the data points. But you do
not work with this line alone; instead there are
two auxiliary lines, the support vectors, which
you draw parallel to the first line. Now you need
to position the main line so that the supports are
as far away from it as possible without data
points crossing the supports. Figure 3 shows an
example of this process.

It is not always possible to set the supports so
that all data points are outside. In this case, you
calculate an error value (based on the distance to
the support line) for each incoming data point,
total the errors, and then look for the position of
the line that has the lowest error value. The spe-
cial thing about SVMs is that you can add

Figure 3: Visualization of a SVM: The area around the lines
needs to be as wide as possible without enclosing data
points. Then the point groups are separated in the best pos-
sible way.

Figure 2: Visualization of a linear regression. The least squares
method yields the regression line shown here.

24 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

COVER STORY
Data Science Methods

feedback. One example of rein-
forcement learning is Google’s
AlphaGo.

Performance
Measurement
With classification methods, in par-
ticular, you need a metric to judge
how well a model performs. To eval-
uate this, however, you need to know
more than how often a model returns
correct predictions.

If a model says no to every credit
decision, it could correctly predict
all credit defaults (true positives).
The true positive rate is also re-
ferred to as the sensitivity. Unfortu-
nately, the bank would then lose its
business model, since the model
would also prevent the good trans-
actions (false positives). If, on the
other hand, it allowed all applica-
tions, it would allow all incorrect
decisions (false negatives) in addi-
tion to the correct decisions (true negatives – also known as
the specificity).

Ideally, a model will minimize both false positives and
false negatives: At both extremes, the bank goes broke – ei-
ther because it no longer does any business at all or because
too many loan defaults occur and can no longer be compen-
sated for by loan income. The four values of false and true
positives and negatives map to a confusion matrix. The con-
fusion matrix reveals the number of cases an algorithm gen-
erates in each category of positives and negatives. This in-
formation in turn provides a good overview of the perfor-
mance details, although a comparison with other model
variants is difficult because the performance is not available
as a key figure.

One way to acquire a key figure metric is to use ROC AUC
(Receiver Operating Characteristics Area Under the Curve).
The underlying approach of ROC AUC involves plotting the
data points on two axes – one for sensitivity and the other for
specificity. The area under the resulting curve is then used as
the key figure (Figure 4). If the value is near 0.5, the results are
as good as pure coincidence, and below 0.5 the results are
worse than random decisions.

The Precision Recall Curve offers another option. The term
precision, in this case, is the ratio of the true positives to the
sum of the true and false positives; the recall value is the same
as the sensitivity.

The statements made by all of these key performance indi-
cators (KPIs) have their limitations, though, if you want to
know how a model will behave in the real world. For exam-
ple, it is often useful to run a model against the previous
model (or manual processes, if applicable) in a split test. To
stay with the bank example: Did the model result in fewer
loan defaults? On top of this, you also have to develop and
maintain the model, which incurs costs. Does this overhead
pay off?

Another issue that many tutorials ignore: Although a model
might work well, it might possibly discriminate against some
of the actual people that the data points represent. For exam-
ple, the inventor of Ruby on Rails, David Heinemeier Hansson,
had this experience [2] when the limit his wife was given for
her Apple Card credit card was 20 times lower than his own
limit. Oddly enough, Mrs. Hansson had a better credit score
than her husband and was taxed jointly with him. This sug-
gests that gender alone was the reason for giving her a lower
limit.

In addition to just measuring the performance of an algo-
rithm, it is also important to test whether an algorithm discrim-
inates. One way to test for discrimination is to enter exactly the
same data in a credit application, except for the gender or some
other variable you are testing.

Conclusion
Data science is a vast topic that is constantly evolving as
computers grow more powerful and new techniques emerge.
This article outlined some popular techniques that data sci-
entists use when they delve into data to find answers for
their questions. nnn

Tom Alby is the author of several books, a lecturer on
everything data related at several universities, and has worked
at companies such as Bertelsmann, Google, and bbdo. Today, he
is Chief Digital Transformation Officer with Allianz Trade.

Author

[1]	� Tom Alby, Data Science in Practice (Chapman & Hall, 2023):
https://​www.​routledge.​com/​Data‑Science‑in‑Practice/​Alby/​p/​
book/​9781032505268

[2]	� Tweet on Apple Card.
https://​twitter.​com/​dhh/​status/​1192540900393705474

Info

Figure 4: Visualization of a ROC AUC curve: The area under the curve is
an indicator of quality.

25LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

COVER STORY
Data Science Methods

https://www.routledge.com/Data-Science-in-Practice/Alby/p/book/9781032505268
https://www.routledge.com/Data-Science-in-Practice/Alby/p/book/9781032505268
https://twitter.com/dhh/status/1192540900393705474

T he R language is
one of the best
solutions for sta-
tistical data anal-

ysis. R is ideal for tasks
such as data science and
machine learning. R,
which was created by
Ross Ihaka and Robert
Gentleman at the Uni-
versity of Auckland in
1991, is a GNU project
that is similar to the S language, which was developed in the
1970s at Bell Labs.

R is an interpreted language. Input is either executed di-
rectly in the command-line interface or collected in scripts.
The R language is open source and completely free. R, which
runs on Linux, Windows, and macOS, has a large and active
community that is constantly creating new, customized
modules.

R was developed for statistics, and it comes with fast algo-
rithms that let users analyze large datasets. There is a free and
very well-integrated development environment named RStudio,
as well as an excellent help system that is available in many
languages.

The R language works with a library system, which makes it
easy to install extensions as prebuilt packages. It is also very
easy to integrate R with other well-known software tools, for
example Tableau, SQL, and MS Excel. All of the libraries are
available from a worldwide repository, the Comprehensive R
Archive Network (CRAN) [1]. The repository contains over
10,000 packages for R, as well as important updates and the
R source code.

The R language includes a variety of functions for manag-
ing data, creating and customizing data structures and types,
and other tasks. R also comes with analysis functions,

descriptive statistics,
mathematical set and
matrix operations, and
higher-order functions,
such as those of the
Map Reduce family. In
addition, R supports
object-oriented pro-
gramming with classes,
methods, inheritance,
and polymorphism.

Installing R
You can download R from the CRAN website. The CRAN site
also has installation instructions for various Linux distribu-
tions. It is a good idea to also use an IDE. In this article, I will
use RStudio, which is the most popular IDE for R.

RStudio is available in two formats [2]. RStudio Desktop is
a normal desktop application, and RStudio server runs as a
remote web server that gives users access to RStudio via a
web browser. I used RStudio Desktop for the examples in
this article.

When you launch RStudio Desktop after the install, you are
taken to a four-panel view (Figure 1). On the left is an editor,
where you can create an R script, and a console that lets you
enter queries and display the output directly. Top right, the IDE
shows you the environment variables and the history of exe-
cuted commands. The visualizations (plots) are output at the
bottom right. This is also where you can add packages and ac-
cess the extensive help feature.

First Commands
When you type a command at the command prompt and
press Enter, RStudio immediately executes that command
and displays the results. Next to the first result, the IDE out-
puts [1]; this stands for the first value in your result. Some

The R programming language is a universal tool for data
analysis and machine learning. By Rene Brunner

Number Game

Getting started with the R data analysis language

26 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

commands return more than one value, and the results can
fill several lines.

To get started, it is a good idea to take a look at R’s data
types and data structures. More advanced applications build on
this knowledge; if you skip over it, you might be frustrated
later. Plan some time for the learning curve. The basic data
types in R are summarized in Table 1. Table 2 summarizes
some R data structures.

To create an initial graph, you first need to define two vectors
x and y, as shown in the first two lines of Listing 1. The c
stands for concatenate, but you could also think of it as collect
or combine. You then pass the variables x and y to the plot()
function (last line of Listing 1), along with vectors; the col
parameter defines the color of the points in the output. Fig-
ure 2 shows the results.

Installing Packages
Each R package is hosted on CRAN, where R itself is also
available. But you do not need to visit the website to
download an R package. Instead, you can install packages
directly at the R command line. The first thing you will
want to do is fetch a library for visualizations. To do this,
call the install.packages("ggplot2") command in the com-
mand prompt console. The installation requires a working
C compiler.

Setting up a package does not make its features available in
R yet – it just puts them on your storage medium. To use the
package, you need to call it in the R session with the
library("ggplot2") command. After restarting R, the library is
no longer active; you might need to re-enable it. Newcomers
tend to overlook this step, which often leads to time-consum-
ing troubleshooting.

RStudio Scripts
A script is a plain text file in which you store the R code. You
can open a script file in RStudio via the File menu.

RStudio has many built-in features that make working with
scripts easier. First, you can run a line of code automatically in
a script by clicking the Run button or pressing Ctrl+Enter. R
then executes the line of code in which the cursor is located. If
you highlight a complete section, R will execute all the high-
lighted code. Alternatively, you run the entire script by clicking
the Source button.

Data Analysis
A typical process in data
analysis involves a series of
phases. The primary step in
any data science project is
to gather the right data
from various internal and
external sources. In prac-
tice, this step is often un-
derestimated – in which
case problems arise with
data protection, security, or
technical access to
interfaces.

Data cleaning or data prep-
aration is a critical step in
data analysis. The data

Figure 1: The main window of the RStudio IDE is divided into panels.

Type Designation Examples
Logical values LOGICAL TRUE and FALSE

Integers INTEGER 1, 100, 101

Floating-point numbers NUMERIC 5.1, 100.1

Strings CHARACTER "a", "abc", "house"

Table 1: Data Types in R

Name Description

Vector The basic data structure in R. A vector consists of a
certain number of components of the same data type.

List A list contains elements of different types, such as
numbers, strings, vectors, matrices, or functions.

Matrix Matrices do not form a separate object class in R
but consist of a vector with added dimensions. The
elements are arranged in a two-dimensional layout
and have rows and columns.

Data frame One of the most important data structures in R.
This is a table in which each column contains
values of a variable and each row contains a set
of values from each column.

Array An array stores data in more than two dimensions.
An array with the dimensions (2, 3, 4) creates four
rectangular matrices, each with two rows and three
columns.

Table 2: Data Structures in R

�x <‑ c(1, 3, 5, 8, 12)

�y <‑ c(1, 2, 2, 4, 6)

�plot(x,y,col="red")

Listing 1: First Chart

COVER STORY

27LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

R For Science

Data Visualization
R has powerful graphics packages that help with data visual-
ization. These tools produce graphics in a variety of formats,
which can also be inserted into documents of popular office
suites. The formats include bar charts, pie charts, histograms,
kernel density charts, line charts, box plots, heat maps, and
word clouds.

To quickly generate a couple of plots using the previously
installed ggplot2 package, first create two vectors of equal
length. The first is a set of x-values; the second is a set of y-
values. Next, square the values of the x vector to generate
the values for the y vector, and finally output the graph
(Listing 2).

The scatter plot is one of the chart types commonly used
in data analysis; you can create a scatter plot using the
plot(x, y) function. You can pass in other parameters, such
as main for the header input, xlab for the x-axis labels, and
ylab for the y-axis labels. Listing 3 uses a dataset supplied
by R from the US magazine Motor Trend in 1974, covering 10
aspects of 32 vehicle models, including number of cylinders,
vehicle weight, and gasoline consumption. Load the dataset
by typing:

data(mtcars

The command head(mtcars) then displays the first six lines.
Use the abline() function to add a regression line to the

graph (Figure 3). To do this, lm() first calculates the linear re-
gression between the range and the weight, which shows that
there is a relationship. This is a negative correlation: The
lighter a vehicle is, the farther it can travel on the same amount
of gasoline. The graph says nothing about the strength of the
relationship, but summary(fit) provides a variety of characteris-
tic values of the calculation. This includes a fairly high

collected from various sources might be disorganized, incomplete,
or incorrectly formatted. If the quality of the data is not good, the
findings will not be of much use to you later on. Data preparation
usually takes the most time in the data analysis process.

After cleaning up the data, you need to visualize the data for
a better understanding. Visualization is usually followed by hy-
pothesis testing. The objective is to identify patterns in the da-
taset and find important potential features through statistical
analysis.

After you draw insights from the data, a further step typically
follows: You will want to predict how the data will evolve in
the future. Prediction models are used for this purpose. Histori-
cal data is divided into training and validation sets, and the
model is trained with the training dataset. You then verify the
trained model using the validation dataset and evaluate its ac-
curacy and efficiency.

Figure 2: An initial, very simple chart in R. The coor-
dinates of the data points were passed in as vectors.

Figure 3: The regression line illustrates the relation-
ship between the vehicle weight and range.

�> x <‑ c(‑1, ‑0.8, ‑0.6, ‑0.4, ‑0.2, 0, 0.2, 0.4, 0.6, 0.8, 1)

�> y <‑ x^2

�> qplot(x, y)

Listing 2: Sample Graph

�> �plot(mtcars$wt, mtcars$mpg, main = "Scatter chart", xlab =

"Weight (wt)", ylab = "Miles per gallon (mpg)",

� pch = 20, frame = FALSE)

�> fit <‑ lm(mpg ~ wt, data=mtcars)

�> abline(fit, col="red")

Listing 3: Vehicle Data Example

�> �qplot(factor(cyl), mpg, data = mtcars, geom = "violin",

color = factor(cyl), fill = factor(cyl))

Listing 4: Box plots

�> colnames(mtcars)[colnames(mtcars) == 'cyl'] <‑ 'Zylinder'

�> without.zeros <‑ na.omit(mtcars)

�> without.duplicates <‑ unique(mtcars)

Listing 5: Data Cleanup

28 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

COVER STORY
R For Science

R-squared value, a statistical measure of how close the data
points are to the regression line.

Histograms visualize the distribution of a single variable. A
histogram shows how often a certain measured value occurs or
how many measured values fall within a certain interval. The
qplot command automatically creates a histogram if you only
pass in one vector to plot. qplot(x) creates a simple histogram
from x <‑ c(1, 2, 2, 3, 3, 4, 4, 4).

The box plot, also known as a whisker diagram, is another
type of chart. A box plot is a standardized method of display-
ing the distribution of data based on a five-value summary:
minimum, first quartile (Q1), median, third quartile (Q3), and
maximum. In addition, a box plot highlights outliers and re-
veals whether the data points are symmetrical and how closely
they cluster.

In R you can generate a box plot, for example, with
qplot(). The best way to generate a box plot is with the
sample data from mtcars. To use the cyl column as a cate-
gory, factor() first needs to convert the values from numeric
variables to categorical variables. This is done with the
factor() command (Listing 4).

Thanks to the special display form that the geom="violin" pa-
rameter sets here, you can see at first glance that, for example,
the vast majority of eight-cylinder engines can travel around 15
miles on a gallon of fuel, whereas the more frugal four-cylinder
engines manage between 20 and 35 miles with the same
amount (Figure 4).

Data Cleanup
Data cleanup examples are difficult to generalize, because the
actions you need to take heavily depend on the individual da-
taset. But there are a number of fairly common actions. For ex-
ample, you might need to rename cryptically labeled columns.
The recommended approach is to first standardize the designa-
tions. Then change the column names with the colnames()
command. Then pass in the index of the column whose name
you want to change in square brackets. The index of a particu-
lar column can also be found automatically (Listing 5, first

line). If you do not want to overwrite the column caption of the
original mtcars dataset, first copy the data to a new data frame
with df <‑ mtcars.

If the records have empty fields, this can lead to errors.
That’s why it is a good idea to resolve this potential worry at
the start of the cleanup. Depending on how often empty fields
occur, you can either fill them with estimated values (imputa-
tion) or delete them. The command from the second line of
Listing 5 removes all lines that contain at least one zero (also
NaN or NA).

Records also often contain duplicates. If the duplicate is the
result of a technical error in data retrieval or in the source sys-
tem, you should first try to correct this error. R provides an
easy way to clean up the dataset and assign the results to a
new, clean data frame with the unique() command (Listing 5,
last line).

Predictive Modeling
In reality, there are a variety of prediction models with a wide
range of parameters that provide better or worse results de-
pending on the requirements and data. For an example, I’ll use
a dataset for irises (the flowers) – one of the best-known datas-
ets for machine learning examples.

As an algorithm, I use a decision tree to predict the iris
species – given certain properties, for example, the length
(Petal.Length) and width (Petal.Width) of the calyx. To do
this, I first need to load the data, which already exists in an
R library (Listing 6, line 1).

The next thing to do is to split the data into training and
test data. The training data is used to train the model,
whereas the test data checks the predictions and evaluates
how well the model works. You would typically use about 70
percent of the data for training and the remaining 30 percent
for testing. To do this, first determine the length of the record
using the nrow() function and multiply the number by 0.7
(Listing 6, lines 2 and 3). Then randomly select an appropri-
ate amount of data (line 5).

I have set a seed of 101 for the random value selection in
the example (line 4). If you set the same value for the seed,
you will see identical random values. Following this, split the
data into iris_train for training and iris_test for validation
(lines 6 and 7).

Figure 4: Miles per gallon for 4-, 6-, and 8-cylinder
vehicles.

01 �> data(iris)

02 �> n <‑ nrow(iris)

03 �> n_train <‑ round(.70 * n)

04 �> set.seed(101)

05 �> train_indicise <‑ sample(1:n, n_train)

06 �> iris_train <‑ iris[train_indicise,]

07 �> iris_test <‑ iris[‑train_indicise,]

08 �> install.packages("rpart ")

09 �> install.packages("rpart.plot")

10 �> library(rpart)

11 �> library(rpart.plot)

12 �> �iris_model <‑ rpart(formula = Species ~.,data = iris_

train, method = "class")

13 �> rpart.plot(iris_model, type=4)

Listing 6: Prediction with Iris Data

29LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

COVER STORY
R For Science

You can now also imagine how this algorithm could be ap-
plied to other areas. For example, you could use environmen-
tal climate data (humidity, temperature, etc.) as the input,
combine it with information on the type and number of de-
fects in a machine, and use the decision tree to determine the
conditions under which the machine is likely to fail.

Importing Data
If you want to analyze your own data now, you just need to
import the data into R to get started. R lets you import data
from different sources.

To import data from a CSV file, first pass the file name (in-
cluding the path if needed) to the read.table() function and
optionally specify whether the file contains column names. You
can also specify the separator character for the fields in the
lines (Listing 8, first line).

If the data takes the form of an Excel spreadsheet, you can
also import it directly. To do this, install the readxl library and
use read_excel() (second line) to import the data.

Conclusions
The R language is a powerful tool for analyzing and visualizing
scientific data. This article took a look at how to install R,
RStudio, and the various R libraries. I also described the vari-
ous data structures in R and introduced some advanced analy-
sis methods. Now you can jump in and start using R for your
own scientific data analyses. nnn

After splitting the data, you can train
and evaluate the decision tree model. To
do this, you need the rpart library.
rpart.plot visualizes the decision tree
(lines 8 to 11). Next, generate the deci-
sion tree based on the training data.
When doing so, pass in the Species col-
umn in order to predict which iris spe-
cies you are looking at (line 12).

One advantage of the decision tree is
that it is relatively easy to see which pa-
rameters the model refers to. rpart.plot
lets you visualize and read the parameters (line 13). Figure 5
shows that the iris species is setosa if the Petal.Length is
greater than 2.5. If the Petal.Length exceeds 2.5 and the
Petal.Width is less than 1.7, then the species is probably ver-
sicolor. Otherwise, the virginica species is the most likely.

The next step in the analysis process is to find out how ac-
curate the results are. To do this, you need to feed the model
data that it hasn’t seen before. The previously created test
data is used for this purpose. Then use predict() to generate
predictions based on the test data using the iris_model model
(Listing 7, line 1).

There are a variety of metrics for determining the quality of
the model. The best known of these metrics is the confusion
matrix. To compute a confusion matrix, first install the caret li-
brary (lines 2 and 3), which will give you enough time for an
extensive coffee break even on a fast computer. Then evaluate
the iris_pred data (line 4).

The statistics show that the model operates with an accuracy
of 93 percent. The next step would probably be to optimize
the algorithm or find a different algorithm that offers greater
accuracy.

Figure 5: Visualizing the decision tree model with
the iris data.

[1]	� CRAN: https://​cran.​r‑project.​org

[2]	� RStudio download: https://​www.​rstudio.​com/​products/​rstudio

Info

Rene Brunner is the founder of Datamics, a consulting
company for Data Science Engineering, and Chair of the Digital
Technologies and Coding study program at the Macromedia
University. With his online courses on Udemy and his “Data
Science mit Milch und Zucker” podcast, he hopes to make data
science and machine learning accessible to everyone.

Author

01 �> iris_pred <‑ predict(object = iris_model, newdata = iris_test, type = "class")

02 �> install.packages("caret")

03 �> library(caret)

04 �> confusionMatrix(data = iris_pred, reference = iris_test$Species)

Listing 7: Accuracy Estimation

�> df <‑ read.table("meine_datei.csv", header = FALSE, sep = ",")

�> my_daten <‑ read_excel("my_excel‑file.xlsx")

Listing 8: Data Import

nnn

30 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

COVER STORY
R For Science

https://cran.r-project.org
https://www.rstudio.com/products/rstudio

T he concept of immutable objects –
objects that can be replaced but
not edited – is not new to Linux.
Object-oriented program lan-

guages such as Rust, Erlang, Scala,
Haskell, and Clojure have immutable ob-
jects, and many programming languages
allow immutable variables. Similarly, the
chattr command has an immutable attri-
bute for directories and files.

In recent years, immutable systems
have emerged, originally for the cloud
or embedded devices, but now for
servers and desktop environments as
well. Some of these distros are new,
and many are based on major distribu-
tions such as Debian, openSUSE, and
Ubuntu. All are seen as adding another
layer of security and most use contain-
ers and universal packages, bringing
these technologies to the average user
for everyday use (see Table 1).

The rise of immutable distros

 Steadfast
Immutable distributions offer a layer of added security.
Bruce explains how immutable systems work and
discusses their benefits and drawbacks. By Bruce Byfield

Bruce Byfield is a computer journalist and
a freelance writer and editor specializing
in free and open source software. In
addition to his writing projects, he also
teaches live and e-learning courses. In his
spare time, Bruce writes about Northwest
Coast art (http://​brucebyfield.​wordpress.​
com). He is also co-founder of Prentice
Pieces, a blog about writing and fantasy at
https://prenticepieces.com/.

Author

blendOS An Arch Linux-based distro suitable for beginners that runs
packages from multiple distros on the same desktop

Bottle Rocket A distro for use with Amazon Web Services

carbonOS A Gnome-based distro that includes system updates

CoreOS A distro used by Red Hat Enterprise Linux (RHEL)

Fedora Silverblue A variant of Fedora Workstation that is perhaps the most
popular immutable distro

Fedora Kinoite A Plasma-based variant of Fedora Workstation

Fedora Sericea A variant of Fedora Workstation that uses the Sway window
manager

Fedora CoreOS A distro designed for clusters (but operable as standalone)
and optimized for Kubernetes

Flatcar Container Linux A minimal distro that includes only container tools and no
package manager

RancherOS A light, minimal system with immutability provided by read-
only permissions

NixOS An immutable system, plus rollbacks, system cloning, 80k
packages, preinstall package testing, and multiple versions
of packages

Guix Similar to NixOS, but aimed at advanced users

Talos Linux A distro designed for the cloud and use with Kubernetes
with a minimal installation

Endless OS A Debian-based distro aimed at new users that works offline

Nitrux A Debian and Plasma-based distro

openSUSE MicroOS A server-oriented distro with transactional updates via Btrfs

Vanilla OS A Debian-based distro with emphasis on desktop and user
experience

Ubuntu Core In development since 2014, a well-documented distro
specifically designed for embedded devices

Discontinued: k3os, a minimal distro for running Kubernetes clusters

Table 1: Selected Immutable Distros

Ph
o

to
 b

y
Eg

o
r

M
yz

n
ik

 o
n

 U
n

sp
la

sh

32

REVIEW

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

Distro Walk – Immutable Distros

http://brucebyfield.wordpress.com
http://brucebyfield.wordpress.com
https://prenticepieces.com/

The Immutable
Architecture
The structure of immutable systems is
complicated and varies with the distri-
bution. While only an overview can be
given here, the general definition of an
immutable distro is a core operating
system, usually placed in a separate

container, that is read-only. Once in-
stalled, this core system cannot be per-
manently edited. Any editing attempt
will be lost once the system is rebooted.
Unlike in traditional systems, not even a
root user can alter this core. Instead,
the core can only be completely re-
placed by what is described as an

atomic update during a system reboot
(i.e., the update must be applied all at
once or not at all). Often, each update
can be stored like a snapshot for
backup and may be chosen at bootup.
These images may be handled by an ap-
plication like Fedora Silverblue’s ostree
or through snapshots in a Btrfs filesys-
tem, as with openSUSE’s MicroOS.

But what about non-core components?
As you probably know, traditional pack-
age managers deal with one package at a
time, adding dependencies as needed.
Because a dependency might be an ap-
plication or library that is part of the
core system, in an immutable system,
this approach would only alter the sys-
tem until the next boot, when the
change would be lost and the non-core
package might cease to work. Instead,
immutable distros often use a universal
package system such as AppImage,
Flatpak, or Snap. Because dependencies
in a universal package contain their own
dependencies, they can be run without
interfering with the immutable core.
Should a problem somehow emerge re-
gardless, the system can be rolled back

Figure 1: The blendOS desktop tool for creating containers.

Distro Walk – Immutable Distros

REVIEW

secure as its contents, so immutable
distros can never be totally secure.
There is always the chance that bugs
or security attacks can be introduced
accidentally or deliberately when a
container is created. If that happens, it
could easily be missed out of a false
sense of security. For another, unlike
traditional packages, universal pack-
ages each contain their own libraries,
which may not be be practical on sys-
tems with low memory. Vanilla OS, for
example, requires 50GB for storage.

Perhaps more importantly, immutable
desktops require more maintenance
than traditional package systems like
.deb or .rpm. Instead of a single package
and its dependencies, in at least some
cases, an entirely new system image
must be created to avoid the unin-
tended introduction of new problems.
Either more hands or more hours are
probably needed to assure quality. For
rolling distributions like Arch Linux,
whose emphasis is on the newest soft-
ware, immutable releases seem espe-
cially impractical, although some sort of
compromise with occasional immutable
releases might be possible.

Such concerns suggest that immutable
systems may not be suitable for every
situation. But if general and rolling re-
leases can coexist, there seems no rea-
son why immutable distros cannot find
a niche as well. nnn

at boot. Alternatively, blendOS places
traditional packages from each tradi-
tional distribution in a separate con-
tainer, so that its immutable desktop
can run multiple versions of the same
package.

How much of this structure is visible
from the desktop varies considerably.
Some immutable distributions like Va-
nilla OS and blendOS include graphical
tools for such tasks as creating contain-
ers (Figure 1) and controlling updates
(Figure 2) and universal packages (Fig-
ures 3). In others like Fedora Silverblue,
the immutable aspects are hidden on
the desktop. For example, in Silverblue,
/home is a symbolic link to /var/home,
and the immutable structure is placed
in /sysroot (Figure 4). The most obvi-
ous structure in any immutable distro
is usually the tool for updating, like
Silverblue’s ostree and utilities for
managing containers.

The Immutable Advantage
Details can differ from the general de-
scription given here. However, all im-
mutable distros share the same
advantages:
•	 Added security: Even if the core sys-

tem is somehow cracked, any changes
will disappear upon reboot. Moreover,

with universal
or containerized
packages,
changes are
harder to spread
from one appli-
cation to
another.

•	 Accident proof:
System files
cannot be altered by mistake. Atomic
updates eliminate partial updates, and
snapshots allow rollbacks.

•	 Easier administration: Testing, trouble-
shooting, and cloning are easier be-
cause of the more rigid structure.

Perhaps the greatest advantage, though,
is that embedded and desktop develop-
ment are no longer as separated as they
have been in the past. In immutable sys-
tems, tools that once seemed relevant
mainly to embedded systems such as
containers and universal packages are
given practical purposes in desktop
environments.

Possible Limitations
Like most new technologies, immuta-
ble desktops are often overhyped. For
this reason, I should stress that immu-
table desktops have their limits. For
one thing, any container is only as

Figure 4: Fedora Silverblue stores system images and other files for its
ostree tool in /sysroot.

nnn

Figure 2: The Vanilla OS desktop tool for updates.

Figure 3: The Vanilla OS desktop tool for managing
AppImage packages.

Distro Walk – Immutable Distros

REVIEW

34 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

new RPM package manager, and then
published the code in the AlmaLinux
repositories.

Instead of updates and patches com-
ing from a single repository, AlmaLinux
now must gather them from multiple
sources and then compare, test, and
build the new release from these
sources. To achieve ABI compatibility,
AlmaLinux will use CentOS Stream (the
upstream version of RHEL still available
to the public) and then get additional
code from Red Hat Universal Base Im-
ages (UBIs) and upstream Linux code.
In a recent talk at All Things Open [1],
Vasquez noted that 99 percent of the
packages would match RHEL source
code. Of this 99 percent, 75 percent will
be built from CentOS Stream or UBI im-
ages, while approximately 24 percent
will require manual patching.

The remaining one percent that differs
from RHEL lies in the kernel patches.
These kernel updates pose the biggest
challenge because AlmaLinux can no
longer pull these updates from Red Hat
without violating licensing agreements.
Moving forward, AlmaLinux plans to pull
kernel updates from various other
sources, and, if all else fails, the Oracle
releases (which are also based on RHEL).

On the upside, AlmaLinux can now
include comments in their patches for
greater transparency. Users will see
where the patch comes from, which
was not an option before.

Finally, AlmaLinux now asks users
who find bugs in AlmaLinux to attempt
to test and replicate the problem in
CentOS Stream in order to let developers
correct the issue in the right place.

W hen Red Hat discontinued
CentOS and replaced it with
CentOS Stream in late 2020,
AlmaLinux stepped forward

to build a community downstream ver-
sion of Red Hat Enterprise Linux (RHEL).
In a desire to fill this void in the Enter-
prise Linux ecosystem, CloudLinux col-
laborated with the community to develop
AlmaLinux OS as a downstream build of
RHEL. After the first stable release in
March 2021, CloudLinux turned gover-
nance of AlmaLinux OS over to the non-
profit AlmaLinux OS Foundation. From
there, AlmaLinux chugged along for over
two years providing the Enterprise Linux
community with a forever-free Linux
distro while offering long-term stability
and a production grade platform.

That all changed in June 2023 when
Red Hat announced that RHEL-related
source code would be restricted to Red
Hat’s customer portal. CentOS Stream,
an upstream version of RHEL that con-
tains experimental packages, would now
be the sole repository for public RHEL-
related source code releases. Because
Red Hat’s subscription agreement pro-
hibits customers from redistributing
code, this move appeared to put an end
to downstream builds like AlmaLinux as
well as other RHEL clones like Rocky
Linux and Oracle Linux.

Some were quick to predict the de-
mise of these RHEL clones, but Alma
Linux, Rocky Linux, and others quickly
charted a path forward. While Rocky
Linux and the newly formed OpenELA
(founded by Oracle, SUSE, and CIQ)
have promised to retain 1:1 compatibil-
ity with RHEL, citing their rights under

the GPL, AlmaLinux is forging a differ-
ent path forward.

AlmaLinux plans to maintain applica-
tion binary interface (ABI) compatibility
to continue to provide the community
with a forever-free Enterprise Linux so-
lution. (See the “New Path Forward” box
for our interview with benny Vasquez,
AlmaLinux OS Foundation Chair, to
learn why they chose this route.)

1:1 vs. ABI Compatibility
In 1:1 compatibility, a clone distribution
provides an exact copy of RHEL’s func-
tionality, behavior, and binary compati-
bility, including bug-to-bug compatibil-
ity. It is an exact replica of RHEL minus
RHEL’s branding and trademarks.

With ABI compatibility, AlmaLinux
guarantees that all apps developed for
RHEL or its clones will run on AlmaLinux
without any modifications or extra work
on the part of the user. AlmaLinux will not
be an exact copy, but it will include kernel
and application compatibility. This also
means that AlmaLinux will not guarantee
bug-to-bug compatibility. While some
users might find bugs not found in RHEL,
AlmaLinux also has the opportunity to in-
clude bug fixes not yet addressed by Red
Hat, as well as possibly offer new features
not available in RHEL.

Adjustments
Prior to Red Hat moving RHEL source
code behind a paywall, any security up-
date or bug fix in RHEL resulted in Red
Hat publishing the corresponding code
to a public repository. AlmaLinux then
integrated this updated code into their
own build and test system, produced a

AlmaLinux promises continued RHEL compatibility

 Friendly Fork

Ph
o

to
 b

y
A

le
x

K
o

n
d

ra
ti

ev
 o

n
 U

n
sp

la
sh

Recent policy changes at Red Hat have upturned the RHEL clone community. AlmaLinux charts a new
path by shifting to binary compatibility and away from being a downstream RHEL build. By Amy Pettle

36

IN-DEPTH

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

AlmaLinux

This article was made possible by support
from AlmaLinux OS Foundation through
Linux New Media’s Topic Subsidy Program
(https://www.linuxnewmedia.com/Topic_Subsidy).

New Additions
No longer bound to 1:1 compatibility, Al-
maLinux can set its own priorities rather
than following RHEL’s lead. AlmaLinux
now has the opportunity to include fea-
tures that meet the needs of its commu-
nity, whether that is fixing bugs faster
(like the AMD microcode exploits [2])
or adding new features.

In August 2023, AlmaLinux added
two new repositories, Testing and Syn-
ergy [3]. Testing, currently available
for AlmaLinux 8 and 9, offers security
updates before they are approved and
implemented upstream. AlmaLinux
has invited community members to
help test these updates. (As per usual,
Testing is not recommended for pro-
duction machines.)

Synergy contains packages requested
by community members that currently
aren’t available in RHEL or Extra Pack-
ages for Enterprise Linux (EPEL, a set
of extra software packages maintained
by the Fedora SIG that are not available
in RHEL or CentOS Stream). Synergy is

available for AlmaLinux 8 and 9 as
well as all Enterprise Linux users (e.g.,
RHEL, Rocky Linux, Oracle Linux,
CentOS Stream). Once accepted to
EPEL, these packages will be removed
from Synergy. At the time of writing,
current packages include the Pantheon
Desktop Environment and the Warpina-
tor app. Community members can re-
quest packages via the AlmaLinux Pack-
aging chat channel in Mattermost [4].

Conclusion
Despite Red Hat making it more difficult
to use RHEL code, AlmaLinux has ad-
justed course, relying on ABI compatibil-
ity to deliver a RHEL alternative for the
Enterprise Linux ecosystem. Moving
forward, AlmaLinux plans to continue
contributing upstream to CentOS
Stream, Fedora, and Linux in general.

At the time of writing, AlmaLinux has
announced the first releases using the new
build process, beta versions of AlmaLinux
8.9 and 9.3, so you can see for yourself
how ABI compatibility works. nnn

[1]	� benny Vasquez talk at All Things
Open 23: https://​www.​youtube.​com/​
watch?​v=Jjda39dlu7I

[2]	� AMD microcode exploits:
https://​www.​amd.​com/​en/​resources/​
product‑​security/​bulletin/​
amd‑sb‑7005.​html

[3]	� Testing and Synergy repositories:
https://​almalinux.​org/​blog/​new‑​
repositories‑​for‑​almalinux‑​os‑​synergy‑​
and‑​testing/

[4]	� Packaging chat channel:
https://​chat.​almalinux.​org/​login?​
redirect_to=%2Falmalinux%2Fchannel
s%2Fengineeringpackaging

Info

We talked to benny Vasquez, chair of the
AlmaLinux OS Foundation, about their
decision to shift to ABI compatibility in
the wake of the changes at Red Hat.

Linux Magazine (LM): What prompted
AlmaLinux to choose ABI over 1:1 com-
patibility with RHEL?

benny Vasquez (bV): The short answer is
our users. Overwhelmingly, our users
made it clear that they chose AlmaLinux
for its ease of use, the security and stabil-
ity that it provides, and the backing of a
diverse group of sponsors. All of that to-
gether meant that we didn’t need to lock
ourselves into copying RHEL, and we could
continue to provide what our users needed.

Moreover, we needed to consider what
our sponsors would be able to help us
provide, and how we could best serve the
downstream projects that now rely on Al-
maLinux. The rippling effects of any deci-
sion that we make are beyond measure at
this point, so we consider all aspects of
our impact and then move forward with
confidence and intention.

LM: How did AlmaLinux’s mission of im-
proving the Linux ecosystem for every-
one influence this decision?

bV: We strongly believe that the soul of
open source means working together, pro-
viding value where there is a gap, and help-
ing each other solve problems. If we partici-
pate in an emotional reaction to a busi-
ness’s change, we will then be distracted

and potentially hurt users and the Enter-
prise Linux ecosystem overall. By remain-
ing focused on what is best (though not
easiest), and adapting to the ecosystem as
it is today, we will provide a better and
more stable operating system.

LM: What opportunities does the ABI
route offer over 1:1 compatibility?

bV: By liberating ourselves from the 1:1
promise, we have been able to do a few
small things that have proven to be a
good testing ground for what will come in
the future. Specifically, we shipped a cou-
ple of smallish, but extremely important,
security patches ahead of Red Hat, offer-
ing quicker security to the users of Alma-
Linux. We also announced two additional
repositories. One for testing and one for
new packages that aren’t available in our
upstream or in EPEL.

This also opens the door for other features
and improvements that we could add back
in or change, as our users need. We have
already seen greater community involve-
ment, especially around these ideas.

LM: Does the ABI route pose any extra
challenges?

bV: The obvious one is that building from
CentOS Stream sources takes more ef-
fort, but I think the more important chal-
lenge (and the one that will only be
solved with consistency over time) is the
one of proving that we will be able to de-
liver on the promise. With a community

like ours, rebuilding someone else’s code
doesn’t take as much effort. Technically,
building from Stream takes more time for
sure, but the public perception is that it
will lead to greater divergence from
RHEL. I think folks will be seriously happy
about what they find as we release the
new versions, namely, the consistency,
stability, and security that they’ve come
to expect from us.

LM: Since you are no longer bound to
conform to 1:1 compatibility, what do you
see in AlmaLinux’s future?

bV: We will continue on our goal of be-
coming the home for all users that need
Enterprise Linux for free, but in the next
year I expect that we will see an expan-
sion in the number of kernels we support
and see some new and exciting SIGs
spun up around other features or use
cases, as the community continues to
standardize on how to achieve their goals
collectively.

LM: What do you think your relationship
with Red Hat will look like moving forward?

bV: Ultimately our goal is to improve the
Enterprise Linux ecosystem, and we’ll
welcome anyone who is actively working
toward that goal. We have loved seeing
the positive infusion of energy that the
AlmaLinux users have been able to build
on and are excited to see that continue
to expand through the entire ecosystem.

New Path Forward

Amy Pettle is an editor for ADMIN and
Linux Magazine.

Author

AlmaLinux

37LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

https://www.linuxnewmedia.com/Topic_Subsidy
https://www.youtube.com/watch?v=Jjda39dlu7I
https://www.youtube.com/watch?v=Jjda39dlu7I
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7005.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7005.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7005.html
https://almalinux.org/blog/new-repositories-for-almalinux-os-synergy-and-testing/
https://almalinux.org/blog/new-repositories-for-almalinux-os-synergy-and-testing/
https://almalinux.org/blog/new-repositories-for-almalinux-os-synergy-and-testing/
https://chat.almalinux.org/login?redirect_to=%2Falmalinux%2Fchannels%2Fengineeringpackaging
https://chat.almalinux.org/login?redirect_to=%2Falmalinux%2Fchannels%2Fengineeringpackaging
https://chat.almalinux.org/login?redirect_to=%2Falmalinux%2Fchannels%2Fengineeringpackaging

software (specifically Zoom) to record
keystrokes when attendees logged into
various accounts during the meeting.

Secondly, when presented with the above
training data, the AI’s success rate was in-
credible. Overall the success rate was a
staggering 95 percent. Zoom calls achieved
a 93 percent success rate and Skype man-
aged 91.7 percent accuracy, according to the
Bleeping Computer article.

Keyloggers can be deployed in many dif-
ferent ways. For instance, Endpoint Detec-
tion and Response (EDR) technology was
found to have missed the presence of
BlackMamba keylogging malware. Accord-
ing an article in Dark Reading [2], such an
attack “demonstrates how AI can allow
the malware to dynamically modify be-
nign code at runtime without any com-
mand-and-control (C2) infrastructure, al-
lowing it to slip past current automated se-
curity systems that are attuned to look out
for this type of behavior to detect attacks.”

The Dark Reading article concludes
that without extensive research combined
with effort from the security industry, so-
lutions will struggle to keep us secure.

Now that your fight-or-flight senses
are tingling suitably, I will show you
some tools in action.

Can’t Hear You
Before looking at acoustic keylogging
tools, I’ll cover a non-acoustic keylogger,
logkeys [3], to show how older tools work
as well as some of the jigsaw pieces in-
volved with keyloggers. The logkeys tool

W ith all the discussion about
the application of artificial in-
telligence (AI) in cybersecu-
rity, we are reminded that

criminals are paying close attention to AI's
advances. New functionality identified by
British researchers [1] involves training a
deep learning model to listen in on the
acoustic sounds made by keyboards when
a user is typing. The model then records
the audio from the typing and determines
what was typed. Applications include re-
cording users logging in to sensitive online
accounts or entering payment details.

However, this type of attack does not re-
quire AI to do damage. Keylogging tools al-
ready exist that can listen in on your typ-
ing. While it might sound paranoid, you
might be surprised how advanced such
tools have become, even without machine
learning (ML) removing much of the re-
quired “training” time for an acoustic key-
logger to fully recognize keyboard sounds.

To get you up to speed on keylogging,
I will explain how keylogging works and
look at some of the tools currently avail-
able on Linux.

What’s All the Fuss?
Popularized in movies, the logging of key-
strokes often involves malware being in-
stalled on a target machine with a USB

drive. Once installed, anything typed on
the keyboard attached to the infected com-
puter is saved and forwarded to the at-
tacker, giving them access to passwords,
credit card numbers, bank account infor-
mation, and more. Of course, today the
malware payload can be just as easily de-
livered by unwelcome JavaScript unsus-
pectingly executed by the browser when
you visit an infected web page.

There are some legitimate (though
contentious) uses of this technology. For
example, parents might monitor their
child’s tablet usage or a corporate em-
ployer might keep tabs on an employee’s
computer usage.

A recent article on the Bleeping Com-
puter website [1] regarding the British
deep learning acoustic attack study makes
two fascinating points. Firstly, the study
outlines the baseline where a training al-
gorithm receives enough training data to
recognize the sound of each keystroke.
Bleeping Computer noted: “The research-
ers gathered training data by pressing 36
keys on a modern MacBook Pro 25 times
each and recording the sound produced by
each press.” Devices such as phones, or
anything with a reasonable quality micro-
phone (also infected by malware, most
likely) are used for the recording. The
study also used videoconferencing

An introduction to acoustic keyloggers

 Keyboard
 Eavesdropping
Is someone listening in on your typing? Learn more about how
acoustic keyloggers work. By Chris Binnie

Le
ad

 Im
ag

e
©

 S
er

g
ey

 G
al

u
sh

ko
, 1

23
R

F.
co

m

38

IN-DEPTH

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

Acoustic Keyloggers

records all common character and func-
tion key presses as well as recognizes the
Shift and AltGr modifiers.

To use logkeys, you first need to install
the build tools required on Debian Linux
derivatives (such as Ubuntu Linux):

$ apt install build‑essential U

 autotools‑dev autoconf kbd

Next, you need to clone the repository
and move into the logkeys directory with
the following command:

$ git clone https://github.com/kernc/U

 logkeys.git

$ cd logkeys

You are now ready to create some build
files with the following script and enter
the directory:

$./autogen.sh

$ cd build

Then, you need to check that the build
environment is sound before compiling

the logkeys software with the following
command (note the two dots):

$../configure

Finally, you need to compile logkeys
for your system as follows, before
installing it:
$ make

$ make install

The command compiles with ease on
my Ubuntu Linux 22.04 laptop (if you
want to remove logkeys, see the “Un-
installing logkeys” box). In order to
check that the logkeys binary is avail-
able to my user’s path (or the root
user in this case), I start typing the
logkeys command and then tab-com-
plete it as shown in Listing 2. Happily,
the logkeys help file output appears as
hoped.

Now I will run a test to see if I can get
logkeys to work using instructions from
the documentation [4]. For this test, I
will need two terminals. In the first ter-
minal, I will move into the /tmp directory
to keep the root user’s home directory
tidy and then create an empty logfile
with the following commands:

$ cd /tmp

$ echo "" > watching_you.log

Next I will start logging output with:

$ logkeys ‑‑start U

 ‑‑output watching_you.log

Then, in the second terminal window, I’ll
move into the /tmp directory and follow
the output with the tail command using:

$ tail ‑f watching_you.log

Listing 3 shows that something is re-
corded from each keystroke.

You’ll notice that Listing 3 isn’t very
easy to read thanks to the fact that I use
a UK keyboard. If you use a standard US
keyboard, then the following command
should work for you:

$ logkeys ‑‑start ‑‑us‑keymap U

 ‑‑output watching_you.log

I need to stop logkeys in order to change
the keyboard mapping. During testing, I
used the pkill command to stop logkeys
while it was running; there’s almost cer-
tainly a more graceful way of stopping
the daemon however.

For those not familiar with pkill, it’s a
simple route to take instead of using the
kill command. Be very careful how you
use it as the root user. It essentially saves
time spent looking up a process’s PID to
terminate it. Its purpose is to match the
human-readable name of a process be-
fore stopping it ungracefully. For more
information on pkill, run man pkill.

Since logkeys is a surveillance tool, you
need a way to reliably uninstall it. You
can do this from the build repo directory
(which is /root/logkeys/build in my case
as I’m cloning the repo into the /root di-
rectory) using the command in Listing 1.

Uninstall logkeys

$ make uninstall

Making uninstall in src

make[1]: Entering directory '/root/logkeys/build/src'

 (cd '/usr/local/bin' && rm ‑f logkeys llk llkk)

make[1]: Leaving directory '/root/logkeys/build/src'

[...]

Listing 1: Uninstalling logkeys
$ logkeys ‑‑help

Usage: logkeys [OPTION]...

Log depressed keyboard keys.

 ‑s, ‑‑start start logging keypresses

 ‑m, ‑‑keymap=FILE use keymap FILE

[...]

Listing 2: Checking the logkey Binary

Logging started ...

2023‑08‑13 12:58:05+0100 > <LShft><LCtrl>E<LAlt><Tab>

2023‑08‑13 12:58:13+0100 > <�Enter><Up><LShft>Xu <BckSp>v yx []q?ux? eqwcyx[g yx?u v <LShft>Yjgg cuq <BckSp><BckSp>#q yxeu

esq <LShft>"neci<LShft>" ?ywq?euwr [x? e[yg esq gua aygqv<BckSp><BckSp><BckSp><BckSp><BckSp>?ygq

[]]u<LShft>H

2023‑08‑13 12:58:41+0100 > <Enter>

2023‑08‑13 12:58:41+0100 > <Enter><LShft>$ e[yg ‑<BckSp>?? neci

2023‑08‑13 12:58:52+0100 > <Enter>?<BckSp>e[yg ‑? [<Tab>?<Tab>

2023‑08‑13 12:58:56+0100 > <Enter><LCtrl><LShft>?

[...]

Listing 3: Keystrokes Being Saved

IN-DEPTH
Acoustic Keyloggers

39LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

For logkeys, simply enter:

$ pkill logkeys

Once stopped, I use the UK keyboard lay-
out with logkeys via (note the ‑m switch):

$ logkeys ‑‑start U

 ‑‑output /tmp/watching_you.log U

 ‑m /root/logkeys/keymaps/en_GB.map

The keyboard layouts (shown in Listing 4)
are included in /root/logkeys/keymaps, so
you don’t need to customize them.

Using the UK keyboard layout, List-
ing 5 now displays actual typed text in-
stead of gobbledygook. It’s a little scary
how accurate logkeys is if you look
through the logfile for unusual key com-
binations, that you don’t realize you reg-
ularly use.

I will leave you to experiment with
logkeys. If you want to compare features
with other keyloggers, see lkl [5] and
uberkey [6].

An important takeaway: Keyboard lay-
out can be important to more traditional
keyloggers as well as the logfile setup.

Sorry, I Missed That
Acoustic keylogging, which is a form
of a side-channel attack [7], uses the
audio signal to determine what the
user is typing. Shoyo Inokuchi created
acoustic‑keylogger [8] as part of his un-
dergraduate studies and it offers a good
way to see how tools like this work.

Although Inokuchi’s GitHub repo
hasn’t been updated for three years,
the slick installation process (I chose
the Docker route) worked flawlessly.
However, I wasn’t sure how to view
and analyze the results afterwards.

To install acoustic‑keylogger (which
takes about 594MB of disk space), enter:

$ git clone https://github.com/shoyo/U

 acoustic‑keylogger.git

Cloning into 'acoustic‑keylogger'...

[...]

$ cd acoustic‑keylogger/

ca_�FR.map cs_CZ.map de_CH.map de.map en_GB.map en_US_dvorak.map en_US_ubuntu_1204.

map es_AR.map es_ES.map fr_CH.map

fr‑�dvorak‑bepo.map fr.map hu.map it.map no.map pl.map pt_BR.map pt_PT.map ro.map

ru.map sk_QWERTY.map sk_QWERTZ.map sl.map sv.map tr.map

Listing 4: Keyboard Layouts

chris@Xeo:/tmp$ tail ‑f watching_you.log

Logging started ...

2023‑08‑13 13:35:23+0100 > <PgUp>

2023‑08‑13 13:35:29+0100 > <Enter><LShft>I am watching you very closely

2023‑08‑13 13:35:42+0100 > <Enter>

Listing 5: logkeys Captures Every Single Key Press

$ docker‑compose build

[...]

 ?? 9.7/9.7 MB 9.8 MB/s eta 0:00:00

Collecting psycopg2‑binary==2.8.6

 Downloading psycopg2_binary‑2.8.6‑cp38‑cp38‑manylinux1_x86_64.whl (3.0 MB)

 ?? 3.0/3.0 MB 9.3 MB/s eta 0:00:00

Collecting pytest==6.2.2

 Downloading pytest‑6.2.2‑py3‑none‑any.whl (280 kB)

 ??????????????????????????????????????? 280.1/280.1 kB 3.1 MB/s eta 0:00:00

Collecting scikit‑learn==0.24.1

 Downloading scikit_learn‑0.24.1‑cp38‑cp38‑manylinux2010_x86_64.whl (24.9 MB)

 ?? 24.9/24.9 MB 9.0 MB/s eta 0:00:00

Collecting scipy==1.6.0

 Downloading scipy‑1.6.0‑cp38‑cp38‑manylinux1_x86_64.whl (27.2 MB)

 ?? 27.2/27.2 MB 9.5 MB/s eta 0:00:00

[...]

Listing 6: Docker Compose build Output

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

acoustic‑keylogger_env latest 3608317074d5 4 minutes ago 4.06GB

python 3.8 d114ab2cf5bc 3 weeks ago 997MB

Listing 7: Two Container Images

$ docker‑compose up

Creating network "acoustic‑keylogger_default" with the default driver

Pulling db (postgres:11)...

11: Pulling from library/postgres

bff3e048017e: Pull complete

[...]

Listing 8: Running docker-compose up

env_1 | To access the notebook, open this file in a browser:

env_1 | file:///root/.local/share/jupyter/runtime/nbserver‑1‑open.html

env_1 | Or copy and paste one of these URLs:

env_1 | http://�09815db9c0c3:8888/?token=c55389826f2c1a66819428bad3e6d75a9f91eda5deccded7

env_1 | or http://�127.0.0.1:8888/?token=c55389826f2c1a66819428bad3e6d75a9f91eda5deccded7

Listing 9: Output Notes

40

Acoustic Keyloggers

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

To use Docker Compose, you need to in-
stall it as follows:

$ apt install docker‑compose

which then installs the following new
packages:

bridge‑utils containerd docker‑compose U

 docker.io pigz python3‑attr U

 python3‑docker python3‑dockerpty U

 python3‑docopt python3‑dotenv U

 python3‑jsonschema python3‑pyrsistent U

 python3‑texttable python3‑websocket U

 runc ubuntu‑fan

This added another 295MB of disk space.
You also need to check that Docker En-
gine installed successfully with:

$ apt install docker.io

Now, you are ready to run the Docker
Compose build command, whose output

Figure 1: The dashboard courtesy of Jupyter.

Figure 2: acoustic‑keylogger listens for keystrokes.

Figure 3: Keystroke sounds generated by a MacBook Pro 2016 (source:

https://​github.​com/​shoyo/​acoustic‑​keylogger).

Acoustic Keyloggers

41LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

is shown in Listing 6. This installs all of
env’s dependencies (i.e., Jupyter, Tensor-
flow, NumPy, etc.) and mounts your
local filesystem alongside the env Docker
container filesystem. After running the
build command, you need to confirm
that two container images are present as
shown in Listing 7.

Then you bring up the database,
along with the Python environment, as
shown in Listing 8. The Python envi-
ronment makes use of the Jupyter
Notebook [9]. Listing 9 shows addi-
tional output notes for accessing the
Jupyter Notebook.

To keep the environment up and run-
ning, you must leave the terminal open
and untouched. The final URL in List-
ing 9 shows the web interface (Figure 1).

To run tests, make sure that you are
still in the cloned repository directory
(acoustic‑keylogger/) and use the fol-
lowing command:

$ docker‑compose run env pytest U

 ‑q tests

Figure 2 shows the output, with some
user input at the top (where I randomly
typed keys). Incidentally, my CPU load
went up and fans started whirring on my
old (8-core CPU) laptop when running
this command.

I looked around the container’s filesys-
tem and in Jupyter but couldn’t find
where the analysis of the data was
stored. Inokuchi states that reading the
external documentation isn’t a priority

Figure 4: Capturing keyboard audio.

lib�asound2‑dev libblkid‑dev libdbus‑1‑dev libdecor‑0‑0 libdecor‑0‑dev libdecor‑0‑plugin‑1‑cairo libdrm‑dev libegl‑dev

libegl1‑mesa‑dev libffi‑dev libgbm‑dev

lib�gl‑dev libgles‑dev libgles1 libglib2.0‑dev libglib2.0‑dev‑bin libglu1‑mesa‑dev libglvnd‑core‑dev libglvnd‑dev libglx‑dev

libibus‑1.0‑dev libice‑dev libmount‑dev libopengl‑dev libpciaccess‑dev libpcre16‑3 libpcre2‑16‑0 libpcre2‑dev

libpcre2‑posix3 libpcre3‑dev libpcre32‑3 libpcrecpp0v5 libpthread‑stubs0‑dev libpulse‑dev libsdl2‑2.0‑0 libsdl2‑dev

libselinux1‑dev libsepol‑dev libsm‑dev libsndio‑dev libsndio7.0 libudev‑dev libwayland‑bin libwayland‑dev libx11‑dev

libxau‑dev libxcb1‑dev libxcursor‑dev libxdmcp‑dev libxext‑dev libxfixes‑dev libxi‑dev libxinerama‑dev libxkbcommon‑dev

libxrandr‑dev libxrender‑dev libxss‑dev libxt‑dev libxv‑dev libxxf86vm‑dev pkg‑config uuid‑dev x11proto‑dev

xorg‑sgml‑doctools xtrans‑dev

Listing 10: Installed Packages for kbd-audio

$ �git clone https://github.com/

ggerganov/kbd‑audio

$ cd kbd‑audio

$ git submodule update ‑‑init

$ mkdir build && cd build

$ apt install cmake ‑y

$ cmake .. # leave the dots in place

Listing 11: Additional Installation Steps
$ make

[2%] Building CXX object CMakeFiles/Core.dir/common.cpp.o

[4%] �Building CXX object CMakeFiles/Core.dir/audio‑logger.cpp.o

[6%] Linking CXX static library libCore.a

[6%] Built target Core

[8%] Building CXX object CMakeFiles/Gui.dir/common‑gui.cpp.o

[10%] �Building CXX object CMakeFiles/Gui.dir/imgui/imgui.cpp.o

[...]

[100%] Linking CXX executable compress‑n‑grams

[100%] Built target compress‑n‑grams

Listing 12: Running make

Figure 5: Playing back the recorded audio.

42

Acoustic Keyloggers

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

for using acoustic‑keylogger, but it’s rel-
atively clear that the process is working
as expected.

In the process of using acoustic‑key‑
logger, I discovered that the way that
keys are depressed and how keys spring
back affects how the audio is captured.
According to Inokuchi’s research, the
sounds emitted by the keys can be clus-
tered by their position on the keyboard.
Figure 3 shows the results for a MacBook
Pro 2016.

Smoking Keyboards
Another acoustic keylogger, kbd‑audio
[10] by Georgi Gerganov, offers a collec-
tion of tools for capturing and analyzing
acoustic audio.

You can install kbd‑audio with ease as
follows on Ubuntu Linux 22.04:

$ apt install libsdl2‑dev ‑y

This pulls down the packages shown in
Listing 10, thankfully with a small disk
footprint of 54.2MB.

During my installation of kbd‑audio,
I used the commands in Listing 11,
which differ slightly from the docu-
mentation because I needed additional
packages. Listing 11 resulted in lengthy
output which completed successfully,
as seen here:

‑‑ Configuring done

‑‑ Generating done

‑‑ Build files have been written to: U

 /root/kbd‑audio/build

Finally, I ran the make command to com-
pile the configured build files as shown
in Listing 12. Because I cloned the repos-
itory under the root user’s home direc-
tory, it was important that the compiled
commands were executed under the re-
po’s build directory (in my case, /root/
kbd‑audio/build).

To begin surveilling ambient noise in
the room (turn up your microphone to
maximum volume
for the best results),
use:

$./record‑full output.kbd

Figure 4 shows an excerpt of the record-
ing output.

To play back the keystrokes, run the
following command in another terminal,
again in the same directory:

$./play‑full output.kbd

Figure 5 shows what kbd‑audio recorded.
When I played back the audio from my
recording, I could hear my erratic typing
noises with external ambient sounds
cleverly faded out.

The kbd‑audio GitHub repo offers ad-
vice on how to get graphical output
from its acoustic keylogging activities.
There is also an easy-to-use online
demo [11] for kbd‑audio’s keytap tool.
Using this demo, I entered a few lines
of text and hit the Predict button, and
a graphical representation appeared for
some of the typed characters as shown
in Figure 6. The output in Figure 7
shows how keytap learns from the
sounds it receives. Finally, a YouTube
video [12] on keytap provides addi-
tional information.

As mentioned earlier, depressing a key
on a keyboard and it springing back is
how sounds are analyzed. Figure 8
shows kbd‑audio’s representation of
what that looks like in a sound file.

Two’s a Crowd
You’ll find two other evolutions of keytap
in the kbd‑audio repo. The second evolu-
tion, keytap2, does not require training
data. (I’m sure you can see the

Figure 6: After receiving and analyzing the keyboard input, keytap
highlights the relevant keys.

Figure 7: The learning process occurring under the
hood for keytap.

Figure 8: The ups and downs of keys when typing
(source: https://​ggerganov.​github.​io/​jekyll/​update/​
2018/​11/​30/​keytap‑description‑and‑thoughts.​html).

Acoustic Keyloggers

43LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

To see how keytap3 works, you can
watch a 90-second YouTube video [17].
If you’re not concerned about acoustic
keylogging after watching this video,
then you are clearly less concerned with
cybersecurity than I am.

You can also try out keytap3 using an
online GUI [18]. To get started with the
demo, press the Init button and then
provide your browser with the correct
permissions when prompted.

Finally, an online test [19] lets you
check your keyboard’s security. You type
100 characters and then press Init to get
your results (Figure 9). You can also play
back your recording over your speakers
if desired. In testing my keyboard, I
found the results worrying but not fully
accurate. I suspect using old hardware is
a blessing in this case.

Conclusions
I have demonstrated a number of key-
logging tools ranging from those that
capture key presses to those that record
typing audio. Even in their current iter-
ations, these tools should give you
pause. For some tips on protecting your-
self from keyloggers, I recommend
checking out this cursory discussion on
the topic [20].

As AI advances over the next few
years, keylogging tools will likely
evolve. Until then, you might consider
how many devices in your home have
a microphone and perhaps reduce
them in number. You might also want
to sign out of your online accounts
during video calls. nnn

significant benefits of this iteration of the
tool.) Instead of using training data, key‑
tap2 references statistical information in
relation to the n-gram frequencies in-
volved. An n-gram is a series of adjacent
letters [13]. For a treatise on how keytap2
works, see [14].

You can test out keytap2 in Gerganov’s
Capture The Flag (CTF) competition [15],
where successful users enter a Hall of
Fame. A keytap2 online demo [16] offers
helpful instructions to get you up and
running after clicking the Init button.

Three and Magic Numbers
The final version in the kbd‑audio repo is
keytap3, which improves on the algo-
rithm and provides better n-gram statis-
tics. In addition, keytap3 no longer re-
quires manual intervention during text
recovery – it is fully automated.

[1]	� “New acoustic attack steals data from
keystrokes with 95% accuracy” by Bill
Toulas, Bleeping Computer, August 5,
2023: https://​www.​bleepingcomputer.​
com/​news/​security/​new‑​acoustic‑​
attack‑​steals‑​data‑​from‑​keystrokes‑​
with‑​95‑​percent‑​accuracy

[2]	� “AI-Powered ‘BlackMamba’ Keylog-
ging Attack Evades Modern EDR Se-
curity” by Elizabeth Montalbano,
Dark Reading, March 8, 2023:
https://​www.​darkreading.​com/​
endpoint/​ai‑blackmamba‑​
keylogging‑​edr‑​security

[3]	� logkeys:
https://​github.​com/​kernc/​logkeys

[4]	� logkeys documentation: https://​
github.​com/​kernc/​logkeys/​blob/​
master/​docs/​Documentation.​md

[5]	� lkl:
https://​sourceforge.​net/​projects/​lkl

[6]	� uberkey:
https://​linux.​die.​net/​man/​8/​uberkey

[7]	� Side-channel attack:
https://​en.​wikipedia.​org/​wiki/​
Side‑channel_attack

[8]	� acoustic-keylogger:
https://​github.​com/​shoyo/​
acoustic‑keylogger

[9]	� Jupyter: https://​jupyter.​org

[10]	� kbd-audio: https://​github.​com/​
ggerganov/​kbd‑audio

[11]	� kbd-audio demo:
https://​keytap.​ggerganov.​com

[12]	� keytap demo: https://​www.​youtube.​
com/​watch?​v=2OjzI9m7W10

[13]	� n-gram:
https://​en.​wikipedia.​org/​wiki/​N‑gram

[14]	� n-gram frequencies:
https://​github.​com/​ggerganov/​
kbd‑audio/​discussions/​31

[15]	� CTF challenge: https://​ggerganov.​
github.​io/​keytap‑challenge

[16]	� keytap2 demo:
https://​keytap2.​ggerganov.​com

[17]	� keytap3 demo:
https://​youtu.​be/​5aphvxpSt3o

[18]	� keytap3 GUI:
https://​keytap3‑gui.​ggerganov.​com

[19]	� keytap3 test:
https://​keytap3.​ggerganov.​com

[20]	� Prevention tips: https://​security.​
stackexchange.​com/​questions/​
119730/​targeted‑acoustic‑​
keylogging‑​attack‑​prevention

Info

Figure 9: The results of a keyboard vulnerability test.

Chris Binnie is a Cloud Native Security
consultant and co-author of the book Cloud
Native Security: https://​www.​amazon.​com/​
Cloud‑Native‑Security‑Chris‑Binnie/​dp/​
1119782236.

Author

44

Acoustic Keyloggers

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

https://www.bleepingcomputer.com/news/security/new-acoustic-attack-steals-data-from-keystrokes-with-95-percent-accuracy
https://www.bleepingcomputer.com/news/security/new-acoustic-attack-steals-data-from-keystrokes-with-95-percent-accuracy
https://www.bleepingcomputer.com/news/security/new-acoustic-attack-steals-data-from-keystrokes-with-95-percent-accuracy
https://www.bleepingcomputer.com/news/security/new-acoustic-attack-steals-data-from-keystrokes-with-95-percent-accuracy
https://www.darkreading.com/endpoint/ai-blackmamba-keylogging-edr-security
https://www.darkreading.com/endpoint/ai-blackmamba-keylogging-edr-security
https://www.darkreading.com/endpoint/ai-blackmamba-keylogging-edr-security
https://github.com/kernc/logkeys
https://github.com/kernc/logkeys/blob/master/docs/Documentation.md
https://github.com/kernc/logkeys/blob/master/docs/Documentation.md
https://github.com/kernc/logkeys/blob/master/docs/Documentation.md
https://sourceforge.net/projects/lkl
https://linux.die.net/man/8/uberkey
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://github.com/shoyo/acoustic-keylogger
https://github.com/shoyo/acoustic-keylogger
https://jupyter.org
https://github.com/ggerganov/kbd-audio
https://github.com/ggerganov/kbd-audio
https://keytap.ggerganov.com
https://www.youtube.com/watch?v=2OjzI9m7W10
https://www.youtube.com/watch?v=2OjzI9m7W10
https://en.wikipedia.org/wiki/N-gram
https://github.com/ggerganov/kbd-audio/discussions/31
https://github.com/ggerganov/kbd-audio/discussions/31
https://ggerganov.github.io/keytap-challenge
https://ggerganov.github.io/keytap-challenge
https://keytap2.ggerganov.com
https://youtu.be/5aphvxpSt3o
https://keytap3-gui.ggerganov.com
https://keytap3.ggerganov.com
https://security.stackexchange.com/questions/119730/targeted-acoustic-keylogging-attack-prevention
https://security.stackexchange.com/questions/119730/targeted-acoustic-keylogging-attack-prevention
https://security.stackexchange.com/questions/119730/targeted-acoustic-keylogging-attack-prevention
https://security.stackexchange.com/questions/119730/targeted-acoustic-keylogging-attack-prevention
https://www.amazon.com/Cloud-Native-Security-Chris-Binnie/dp/1119782236
https://www.amazon.com/Cloud-Native-Security-Chris-Binnie/dp/1119782236
https://www.amazon.com/Cloud-Native-Security-Chris-Binnie/dp/1119782236

left of Figure 1 is an ASCII rendition of the
installed distribution’s logo. On the right
are 15 system statistics. Which statistics
are shown, the details of each statistic, and
the general layout are all customizable
either from the command line or from
.config/neofetch/config.conf in the user’s
home directory (Figure 2). At the bottom,
a line of colored blocks does nothing ex-
cept to mark the end of the display.

L inux has never lacked applications
that display system information,
but perhaps the most comprehen-
sive tool is neofetch [1], a Bash

script that displays the current informa-
tion about hardware, operating systems,
and desktop settings. The information is
presented by default in a somewhat hap-
hazard order, which can be compensated
for by a high degree of customization.

Little wonder, then, that in recent years
neofetch has found its way into most
distributions. Not only is it a useful sum-
mary of system information, supporting
a wide array of hardware and software,
but, as its GitHub page notes, its visually
appealing output is also useful in screen-
shots of your system.

For many, the output of the bare com-
mand may be enough (Figure 1). On the

A command-line
system information tool

Figure 1: The neofetch’s default output: In addition to a wide range of system information, it includes an
ASCII rendering of the distribution logo. Ph

o
to

 b
y

M
o

ck
u

p
 G

ra
p

h
ic

s
o

n
 U

n
sp

la
sh

 System in a

Nutshell
Neofetch displays system information about your hardware, operating sytem, and desktop
settings in visually appealing output perfect for system screenshots. By Bruce Byfield

46

IN-DEPTH

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

Command Line – neofetch

Display Options
Neofetch has dozens of options, most of
which are self-explanatory. They cover a
bewildering array of statistics, covering
every aspect of a system (Table 1). After
each option, you can specify whether its
display is off or on. Alternatively, you
can use ‑‑disable OPTION to turn options

off in a space-sep-
arated list. In ad-
dition, some op-
tions have multi-
ple settings. Some
stats display on
separate lines,
while others sim-
ply add a few
characters to a de-
fault line.

Note that neo-
fetch is not a
monitor that con-
stantly updates
the information it

gives, like top does. It displays only the
current information when it is run.

Most of this information is available in
your the desktop settings, or through
other commands like uname, but neofetch
provides a convenient summary. Most
users will probably not care to scroll
through all the options, opting instead

for a careful selection of the statistics
that are most useful to them. Neofetch
can also be called on in scripts, using the
bare command plus one or two options.
The man page gives this example:

memory="$(neofetch memory)"; U

 memory="${memory##*: }"

or

IFS=$'\n' read ‑d "" ‑ra info U

 < <(neofetch memory uptime wm)

info=("${info[@]##*: }")

The Configuration File
Neofetch creates .config/neofetch/con‑
fig.conf in a user’s home directory the
first time it is used. Statistics can also be
cut and pasted to rearrange them. The
.config file gives examples, but online
help is available if needed [2], including
a neofetch Reddit [3]. A configuration
setting can be overridden by a com-
mand-line option.

Is neofetch an Orphan?
Some users are concerned that neofetch
has had no updates for almost two
years. The reason may be that there is
nothing new to add. Consequently, de-
spite the fact that neofetch still works
on most systems, many are looking for
an alternative. Many coding languages
have their own version of neofetch, in-
cluding Java, Pascal, C++, Perl, Rust,
Lua, and Python, but the newest and
most popular is fastfetch [4]. Written in
C, fastfetch is a close clone and faster
than neofetch, but remains a work in
progress. Fastfetch lacks a man page,
and some of neofetch’s options are cur-
rently unsupported for some distribu-
tions, so it is only starting to be in-
cluded in distributions’ repositories. In-
stead, users must compile fastfetch sep-
arately or hunt for a suitable package.
For now, most users should probably
stick to neofetch if possible. nnn

[1]	� neofetch: https://​github.​com/​
dylanaraps/​neofetch

[2]	� Config file: https://​github.​com/​
dylanaraps/​neofetch/​wiki/​Config‑File

[3]	� neofetch Reddit:
https://​www.​reddit.​com/​r/​sysfetch/

[4]	� fastfetch packages: https://​github.​com/​
fastfetch‑cli/​fastfetch/​releases

Info

Figure 2: Neofetch creates a configuration file for
each user.

Option Description Values (All take on/​off)
Hardware & OS
‑‑title_fqdn Full domain name in title
‑‑os_arch System architecture
‑‑package_managers Includes universal

packages
‑‑speed_type type CPU speed current, min, max, bios, scaling_

current, scaling_min, scaling_max
‑‑cpu_brand CPU manufacturer
‑‑cpu_cores CPU core type logical, physical
‑‑cpu_speed CPU speed
‑‑cpu_temp CPU temperature C (Celsius), F (Fahrenheit)
‑‑refresh_rate Displays refresh rate on

each monitor
‑‑gpu_brand GPU brand AMD, NVIDIA, Intel
‑‑disk_show Filesystems to show /dev or /path
‑‑disk_percent Memory used on disk
‑‑cpu_display MODE Bar mode bar, infobar, barinfo
‑‑memory_display MODE Bar mode bar, infobar, barinfo
‑‑battery_display MODE Bar mode bar, infobar, barinfo

Desktop Environment
‑‑de_version Show desktop

environment
‑‑gtk2 Enable/​disable GTK2 Theme, font, icons
‑‑shell_version Show shell version

Text Format
‑‑colors COLORS Comma-separated list

of colors
Changes color in this order: title, @,
underline, subtitle, colon, info

‑‑color_block Toggle color blocks
‑‑ascii_distro DISTRO ASCII image for

distribution
‑‑source SOURCE Source for logo image

Table 1: Selected neofetch Options

IN-DEPTH
Command Line – neofetch

47LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

https://github.com/dylanaraps/neofetch
https://github.com/dylanaraps/neofetch
https://github.com/dylanaraps/neofetch/wiki/Config-File
https://github.com/dylanaraps/neofetch/wiki/Config-File
https://www.reddit.com/r/sysfetch/
https://github.com/fastfetch-cli/fastfetch/releases
https://github.com/fastfetch-cli/fastfetch/releases

Practice with Sample Files
Datamash does not offer many sample
files for learning and testing its many
features. At the time of writing, the
datamash package only includes four
sample files. On Linux, depending on
your distribution, you can find them in
/usr/share, /usr/local/share, or /usr/
share/doc/. If these aren’t enough, you
can generate as many sample files as
desired with simple scripts such as the
one in Listing 1, which is a snippet of
code from another project that I quickly
adapted for this article.

Listing 1 creates a table of random inte-
gers, with the number of lines and col-
umns defined in lines 5 and 6. As is, List-
ing 1 will generate 2,000 random integers
between 1 and 1,000 and print them sep-
arated by tabs (line 14).

More precisely, the counter $I initial-
ized in line 9 is incremented each time a
number is added, at the very end of
line 14. However, each time the coun-
ter’s current value is also divided by the
desired number of columns and assigned
to the $NL variable, in line 13. With four
columns, this means that $NL will cycle
between the values (0,1,2,3) until the
program ends, making the comparison
in line 14 (($COLS ‑1) == $NL) true only
once every four iterations of the loop.

G NU datamash [1] is a com-
mand-line program capable of
analyzing, summarizing, or
transforming in various ways

tables of numbers, with or without text,
stored inside plaintext files. For these
kinds of tasks, datamash is often a faster,
more productive alternative to tools like
AWK, sed, or any scripting language.

Just like those other tools, datamash is
a good team player, in the traditional
Unix and Linux sense: You can use data-
mash interactively at the prompt,

automatically in shell scripts, and even
directly attach it to other programs (in-
cluding itself!) via Unix pipes.

Besides, in almost all the cases I have
seen or can imagine, datamash does
what you need with less typing, possibly
a lot less. Last but not least, datamash
lets you easily perform basic quality
checks on raw data. I'll show you how to
do all this from scratch, starting with the
basic options and ways of working with
datamash and then moving to more
complicated examples.

Data processor

 Open Source Gem
A little-known, very powerful data processor for your scripts, datamash makes long, complex
calculations simple. By Marco Fioretti

Le
ad

 Im
ag

e
©

 M
ik

h
ai

l A
vl

as
en

ko
, 1

23
R

F.
co

m

01 �#! /usr/bin/perl

02

03 �use strict;

04

05 �my $LINES = 500;

06 �my $COLS = 4;

07 �my $CNT = $COLS*$LINES;

08

09 �my $I = 0;

10

11 �while ($I <$CNT) {

12

13 �my $NL = $I % $COLS;

14 �printf "%4.4s%s", int rand(1001), (($COLS ‑1) == $NL) ? "\n" : "\t"; $I++;

15 �}

Listing 1: Generating datamash Test Files

48

IN-DEPTH

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

datamash

When that happens, the code will print a
new line instead of a tab (i.e., start a
new row of the table instead of adding
another column). You may modify the
code in Listing 1 as desired, including
generating text instead of numbers, by
adding arrays of strings and then using
the counter, or another random number,
as an index to load elements of those
arrays.

The datamash Way
Datamash processes data organized in
columns and rows (i.e., lines of text) by
calling functions that perform “opera-
tions” on every element (field) of the
column or columns they are told to use.

The datamash documentation divides
the available operations into six catego-
ries. The simplest one, called “line-filter-
ing,” consists of the single operation
called rmdup that, as its name suggests,
removes duplicate lines.

Most of datamash’s data processing
functions are classified in other catego-
ries that can work “per-line” or by
“grouping.” I initially found that choice
of terms (even though I honestly cannot
suggest better alternatives) a bit confus-
ing. In datamash, per-line operations are
those that, for every row of data, output
one new value for every field of that line
whose column was selected when data-
mash was launched. Per-line operations
can do both string and number
processing.

You may, for example, call functions
such as dirname, basename, and barename
to get the corresponding parts of a file
path or getnum to extract components
such as 753.4 from strings such as some‑
num753.4. If the data is numeric, you may
among other things ask datamash to cal-
culate several types of checksum, en-
code or decode numbers in base 64, or
round them.

All the “grouping” operations instead
return just one value for every column
they are told to process or for each part
(more on this soon) of the same column.
For example, a command like

#> datamash max 3 min 1 mean 5 < someU

 file.csv

4300 23 304,3

would make datamash print the maxi-
mum (4300), minimum (23), and mean
(304,3) values of the third, first, and fifth

columns of the file somefile.csv. The nu-
merical and statistical grouping opera-
tions include both self-explaining func-
tions such as sum, min, max, or mean, and
many obscure (to me) statistical ones.
There are also operations such as coun‑
tunique that count the number of unique
values in a column. To learn about all
the possible grouping operations, please
consult the man page or the online docu-
mentation on the website.

Finally, datamash has a “primary” cat-
egory of five very important meta-opera-
tions, which must be listed first when
used. Of these, the one you will likely
use more often is called groupby (‑g for
short). I will explain it in a moment,
leaving the others for last, after introduc-
ing some other basic concepts and com-
mand-line options of datamash.

Data Parsing
Datamash can manage both contiguous
ranges of columns, which are declared
joining their extremes with a dash, or
any random combination of columns
passed as a comma-separated list:

#> cat sample‑file.csv | datamash max 7,U

 2,5

#> cat sample‑file.csv | datamash max 3‑7

The first command prints the maximum
values of columns 7, 2, and 5 in that
order, while the second returns the four
maximums of columns 3 to 7. Please no-
tice that if you want an operation done
on all the columns of a file you must ex-
plicitly declare the whole range. If a file
has 23 columns, for example, and you
need to know the maximum value in
each of them, you should enter:

#> datamash max 1‑23 < file‑with‑23‑U

 columns.csv

Some operations have additional syntax
because they either require a parameter,
or must combine different columns to
produce one result:

#> datamash perc:40 5 < input‑file.csv

#> datamash pcov 4:6 < input‑file.csv

Here, datamash’s first call returns the
40th percentile of column 5, and the
second returns the covariance (i.e.,
joint variability) of the values in col-
umns 4 and 6.

How are columns recognized? By de-
fault, datamash assumes they are sepa-
rated by single tabs. If they are delim-
ited by other white spaces, or combi-
nations of them, you must say so with
the ‑‑whitespace or ‑W options. In that
case, leading white spaces are ignored.
Any other column delimiter, for exam-
ple, a slash, must be declared with ‑t /
or ‑‑field‑separator=/.

Another thing you need to know
about datamash is inside this short file
of space-separated floating numbers:

#> cat floating.csv

34.2 35.3

14.9 ‑3.3

#> datamash ‑W sum 1 min 2 < floating.csv

datamash: invalid numeric value in line U

 1 field 1: '34.2'

This request to calculate the sum of col-
umn 1 and the minimum value in col-
umn 2 failed because datamash wants
dots, not commas, as decimal-point
characters. To make datamash happy,
use the tr command to translate all dots
to commas:

#> cat floating.csv | tr '.' ',' | dataU

 mash ‑W sum 1 min 2

49,1 ‑3,3

The ‑C or ‑‑skip‑comments option
makes datamash ignore lines that start
with hashes or semicolons. Comments
in other formats (e.g., lines starting
with two slashes such as in the C lan-
guage) may be hidden from datamash
by prefixing them with a hash with the
sed command:

#> cat file‑with‑c‑style‑comments.U

 csv | | sed ‑e 's|^/?|# /?|' | dataU

 mash ‑C ...

Header lines with column labels
greatly increase the readability of both
the input files as well as datamash’s
output. If the first line of a file contains
labels for its columns, as in this sam-
ple file from the datamash
documentation

#> cat /usr/share/doc/datamash/examples/U

 scores_h.txt | head ‑3

Name Major Score

Shawn Arts 65

Marques Arts 58

IN-DEPTH
datamash

49LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

or rearrange columns of data before
performing any of the operations de-
scribed so far. Consider the file in List-
ing 2, which lists the number of users
of several operating systems in differ-
ent places.

With datamash, you can find the total
number of users of each operating sys-
tem as follows:

#> cat users.tsv | datamash ‑s ‑g 2 sum 1

freebsd 2981

linux 222743

unix 29437

With respect to the previous example,
what’s really new here is the primary op-
eration called ‑g or ‑‑groupby.

As its name implies, this operation
makes datamash partition all the rows of
data that have the same value in the col-
umn passed to groupby in as many sepa-
rate groups, in order to perform the de-
sired operation on each of those groups,
one at a time, and then assemble all the
results.

In my example, ‑g 2 right before sum
1 tells datamash to group the rows by
using the values in the second column
as keys and then to calculate for each
of those groups the sum of all its ele-
ments in the first column. In order for
this to work as expected, however, the
first thing to do is to sort all the rows
on the same column, which is what
the ‑s does.

The groupby operation is even more
powerful than it may look from the
first example because it can work on
multiple columns. Take the following
example: In addition to the “Eternal

then datamash will recognize and accept
those labels as column names, if given
the ‑‑header‑in option. You may issue
commands such as

#> cat scores_h.txt | datamash ‑‑headerU

 ‑in min Score

14

to find that the minimum score in the
whole file is 14. There is a trap here,
however. Consider this case, where the
question asked to datamash using the
‑‑header‑in option seems to be “what is
the sum of the numbers in the column
with label 1 (the middle column)?”:

#> cat bad‑headers.csv

0 1 2

1,1 2,2 3,3

7,1 5 4,9

#> cat bad‑headers.csv | datamash ‑W ‑‑U

 header‑in sum 1

8,2

In spite of being told to use the values in
the first line as column labels, datamash
summed the numbers in the first column
(1,1 and 7,1), instead of those (2,2 and
5) in the middle column that has the
label 1 inside the data file. The reason is
that the ‑‑header‑in option does not
override the numeric indices, which
have a higher priority! The obvious solu-
tion, because it also is a good practice in
general, is to not label columns with nu-
meric indices.

Output Formatting
On the output side, datamash can format
its results in several ways, which are al-
most all mirror versions of the input
parsing options I just described. The first
exception is the ‑f or ‑‑full command
switch, which prints the full line of input
data right before the result of any other
operation you asked datamash to per-
form. If you use ‑‑format=FORMAT instead
(see the man page
for details), you
can print the out-
puts in any way
supported by the
printf system
function.

By default, the
output delimiter
for columns will
be the same as the

input data – a tab or whatever was de-
clared with the ‑t or ‑W switches. If you
want a different column delimiter, how-
ever, you can set it with:

#> echo "2,4 3,7 112,88" | datamash ‑W U

 ceil 1‑3 '‑‑output‑delimiter=|'

3|4|113

To add headers, use ‑‑header‑out. Cou-
pled with ‑‑header‑in, that option will
use the same headers present in the
input file. Otherwise it will print the op-
erations corresponding to each column:

echo "2,4 3,7 112,88" | datamash ‑W U

 floor 3 ceil 2 ‑‑header‑outfloorU

 (field‑3) ceil(field‑2)

112 4

As far as output formatting is concerned,
you also need to know about a limitation
of the datamash setting for decimal
precision:

cat rounding.csv

1,89

2,437

0,925

#> datamash ‑R 5 mean 1 < rounding.csv

1,75067

The example above shows that you can
limit the number of decimal digits in the
output with the ‑R (rounding) switch.
However, you cannot eliminate them
completely: Had I set ‑R to 0 to mean no
decimals, datamash would have com-
plained that 0 is not a valid value. Luck-
ily, this limitation is also easy to fix, as I
will show in another example.

Let’s Group!
The real power
of datamash be-
comes evident
whenever you
need to combine

#> cat users.tsv

1993 linux

2981 freebsd

30940 linux

389 linux

29000 unix

189421 linux

437 unix

Listing 2: Number of Users

#> cat cities.csv

Rome Alabama 1987

Rome Georgia 2015

Rome Illinois 1998

Rome Alabama 2002

Rome Iowa 2020

Rome Alabama 2007

Rome Illinois 1974

#> cat cities.csv | datamash ‑t' ' ‑s ‑g 1,2 count 1 min 3

Rome Alabama 3 1987

Rome Georgia 1 2015

Rome Illinois 2 1974

Rome Iowa 1 2020

Listing 3: Number of Events by Place

50

datamash

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

City” in Italy, there are more than a
dozen places named Rome just in the
United States. Imagine that someone
recorded every time a certain event, be
it the birth of quadruplets or a visit
from the US president, took place in
those US locations. I can use groupby to
ask datamash to tell me how many of
these events have happened in each of
those places, including when the first
one happened as shown in Listing 3.

Listing 3 gives the desired answer
thanks to the only substantial differ-
ence between this invocation of data-
mash and the previous one: This time,
I told datamash to group and process
as one key the combination of two col-
umns (‑g 1,2). That’s why it could cal-
culate that in Rome Alabama the event
happened three times, starting in 1987.

Another thing that is important to
learn from the last two examples is that
the groupby operation always prints first
the column, or combination of columns,
that it used as keys. What if you needed
to have those columns in some other po-
sition? The answer, as I will show
shortly, is to pass the output of data-
mash to some other tool, such as AWK,
sed, or even a second invocation of
datamash!

Mixed Text/​Data Processing
By now, you have already seen that,
while the main focus of datamash is
numbers and numeric operations, it
can also process textual values. You
can see more of its capabilities for han-
dling textual values by looking for the
“scores” and “passwords” examples in
the online manual [1]. Here I present a
slightly more complicated example of
the same capabilities, based on a per-
sonal need.

Among other things, I manage three
blogs whose posts are archived in my
computer as plaintext files with Mark-
down syntax, inside three folders
named stop, freesw, and tips, which
are shortcuts for the real names of the
blogs.

For several reasons, it need to regu-
larly check some statistics about those
blogs, including the minimum, maxi-
mum, and average number of words of
their posts. I do that by preprocessing
and then passing to datamash the out-
puts of the Unix command wc that, when
given a file, prints out just its number of

lines, words, and characters, in following
order:

#> wc testfile.md

33 407 3608 testfile.md

Explanation of Listing 4
Listing 4 shows the several steps I took
to compose the datamash-based com-
mand that would do just what I
needed. To understand it, please note

ONE #> find . ‑type f ‑name "*.md" | xargs wc

32 284 2359 ./stop/google‑is‑microsoft‑2.0.md

68 532 3579 ./stop/spying‑is‑over.md

253 4151 27074 ./freesw/nextcloud‑16‑review.md

48 411 3184 ./stop/ready‑facebook‑one.md

...

TWO #> find . ‑type f ‑name "*.md" | xargs wc \

 | sort ‑t / ‑k 2

253 4151 27074 ./freesw/nextcloud‑16‑review.md

32 284 2359 ./stop/google‑is‑microsoft‑2.0.md

68 532 3579 ./stop/spying‑is‑over.md

48 411 3184 ./stop/ready‑facebook‑one.md

...

THREE #> find . ‑type f ‑name "*.md" | xargs wc \

 | sort ‑t / ‑k 2 \

 | tr / " "

202 1245 8267 . freesw ignore‑threads‑in‑mailing‑lists.md

196 1978 14890 . freesw odf‑slideshows‑from‑plain‑text‑files.md

 39 401 2793 . stop nuclear‑batteries‑yay.md

 47 537 3616 . stop obstacles‑to‑open‑data.md

 24 159 1571 . tips records‑usa‑can‑be‑proud‑of.md

 45 449 3548 . tips teacher‑adept‑at‑firearms.md

...

FOUR #> find . ‑type f ‑name "*.md" | xargs wc \

 | sort ‑t / ‑k 2 \

 | tr / " " \

 | datamash ‑W groupby 5 mean 1 mean 2 mean 3 min 2 max 2

freesw 95,1 937,9 6578,0 26,0 4151,0

stop 58,6 610,6 4401,6 33,0 5657,0

tips 41,7 285,6 2327,2 58,0 4262,0

...

FIVE #> find . ‑type f ‑name "*.md" | xargs wc \

 | sort ‑t / ‑k 2 \

 | tr / " " \

 | datamash ‑W groupby 5 mean 1 mean 2 mean 3 min 2 max 2 \

 | datamash basename 1 trunc 2‑6

freesw 95 937 6578 26 4151

stop 58 610 4401 33 5657

tips 41 285 2327 58 4262

Listing 4: Print Summary Statistics of Three Blogs

datamash

51LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

operation generates an error message if
the rows of the current file do not have
exactly the same number of arguments
(Listing 5).

Inside a shell script, you may auto-
mate the check and generate more syn-
thetic error messages as follows

datamash check < bad.csv || die "this U

 file has an invalid structure"

because (without going into details) the
command after the || operator will only
be executed if the datamash check fails.

The control can be even more precise,
because check accepts two optional argu-
ments (lines and columns) and will fail
unless the target file has exactly that
number of lines and columns.

Transformations
The last major type of operation that
datamash can perform is what I would
call the data or table “transformations”
provided by the primary functions called
reverse, transpose, and crosstab.

The first one reverses, unsurprisingly,
the positions of all columns (Listing 6).

Combined with the cut command,
which extracts whatever combination of
columns you want, datamash’s reverse
operation makes it very easy to rear-
range columns in a text file any way
you desire.

Compared to reverse, transpose some-
how does a mirror operation, because it
swaps rows with columns (Listing 7).

It is possible to reverse or transpose
files even if their lines do not have all
the same number of columns by add-
ing the ‑‑no‑strict option. In those
cases, you may even fill the empty
fields with a string of your choice
using ‑‑filler="FILLER STRING HERE".

The crosstab operation, which exposes
the relationships between two columns,

that I prefixed the shell prompts with
numbers in capital letters to make the
explanation easier to follow. I also cut
the output of each command to just a
few hand-picked lines, for readability
and brevity.

ONE: This finds all the Markdown
files in the root directory of my blogs
and, through the xargs command,
passes them all to wc. The output has
all the data I need, but it is not sorted
by blog name (the freesw entry should
be first, not third!). This is the way
the find command and Linux filesys-
tems work, but datamash can only
group rows presorted by the grouping
key. As far as I understand, the sort-
ing that would be needed here is be-
yond datamash’s capabilities – no
problem though.

TWO: I piped the output of the initial
command to the sort utility, telling it to
sort on the second field (‑k 2), with / as
field separator. This sorted the posts by
blog, as needed, so on to the next
problem.

THREE: The find command prints the
whole path to a file, but the only part I
need datamash to see is the blog name
(i.e., freesw, stop, or tips). This is a
problem because that part is delimited
by slashes, not spaces like the previous
columns. Because datamash does not

support multiple field delimiters, I con-
verted the slashes to spaces with the tr
command. Now all the columns have
the same delimiter, and the blog names
are always in the fifth column. This is
something datamash can handle!

FOUR: I can finally add datamash to
the pipe, first setting the column sepa-
rator to whitespaces (‑W), and then ask-
ing to group on column 5 (the blog
name), in order to first print the mean
values of line, words, and character
numbers of all the posts of each blog,
followed by their minimum and maxi-
mum number of words. At this point,
the only thing left is to get rid of the
decimal digits.

What I actually got (even if I left only
the first digits in Listing 1) were num-
bers like 937,91039, which are just con-
fusing. For my purposes, truncating all
those numbers to integers would be
more than adequate. The problem is,
how can I do it if, as explained above, I
cannot give the ‑R option a null value?

FIVE: Here is the solution: Pipe the
output of datamash to datamash, telling
it to truncate all the numeric fields,
which are those in the columns with in-
dexes between 2 and 6!

Quality Control
Remember I said that datamash has not

just groupby, but a
whole category of
“primary opera-
tions”? Time to
talk about the
other four, which
add to datamash
two different ca-
pabilities that I
like a lot, the first
being a sort of
quality control.
The check

$ cat bad.csv

A 1 ww

B 2 xx

C 3

D 4 zz

$ datamash check < bad.csv

datamash: check failed: line 3 has 2 fields (previous line

had 3)

fail

Listing 5: check Operation Error Message

#> cat eight‑columns‑file.tsv

 768 907 240 539 644 890 380 344

 901 646 534 653 18 653 14 547

 257 808 802 650 139 450 19 113

#> cat eight‑columns‑file.tsv | datamash ‑W reverse

344 380 890 644 539 240 907 768

547 14 653 18 653 534 646 901

113 19 450 139 650 802 808 257

Listing 6: Reverse Column Positions
#> cat 3‑columns‑file.csv

a 1 OK

b 5 OK

c ‑1 OK

d ‑20 NOK

#> cat 3‑columns‑file.csv | datamash ‑W transpose

a b c d

1 5 ‑1 ‑20

OK OK OK NOK

Listing 7: Transpose Rows with Columns

52

datamash

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

is the datamash version of pivot tables. At
first sight, crosstab may seem to be just
another way to group multiple columns,

because it can count how many rows
have the same values in a given pair of
columns, as shown in Listing 8.

In Listing 8, datamash indeed tells that
a and x appear side-by-side two times in
the input file. If this were the whole story,
crosstab would be just another version of
grouping that displays its findings with a
matrix instead of a list.

The added value of crosstab is that it
can show using the same format the re-
sult of many other grouping operations,
not just the number of times each pair
appears. This is evident in these two
examples from the datamash manual
(Listing 9), where crosstab is used to

show first the
sums and then the
unique values
from the third col-
umn, for any
combination of
values from the
first two.

Conclusion
Datamash is one of
those little-known

open source gems that may be a huge
time saver for more than a few users. If
you have tabular data of any type, try it,
alone or as a lightweight but still power-
ful sidekick of VisiData [2]. You won’t re-
gret it! nnn$ cat input.txt

a x 3

a y 7

b x 21

a x 40

$ datamash ‑s crosstab 1,2 < input.txt

 x y

a 2 1

b 1 N/A

Listing 8: crosstab Example

#> datamash ‑s crosstab 1,2 sum 3 < input.txt

 x y

a 43 7

b 21 N/A

#> datamash ‑s crosstab 1,2 unique 3 < input.txt

 x y

a 3,40 7

b 21 N/A

Listing 9: crosstab Shows Sums and Values

[1]	� GNU datamash:
www.​gnu.​org/​software/​datamash/

[2]	� “A Command-Line Data Visualization
Tool” by Marco Fioretti, Linux Maga-
zine, issue 277, December 2023, pp.
40-45

Info

Marco Fioretti (https://​mfioretti.​substack.​
com) is a freelance author, trainer, and
researcher based in Rome, Italy, who has
been working with free/​open source
software since 1995,
and on open digital
standards since 2005.
Marco also is a board
member of the Free
Knowledge Institute
(http://​freeknowledge.​eu).

Author

datamash

IN-DEPTH

http://www.gnu.org/software/datamash/
https://mfioretti.substack.com
https://mfioretti.substack.com
http://freeknowledge.eu

summarize some of the strengths and
weakness that I’ve found while working
with PyScript.

Getting Started
PyScript doesn’t require any special soft-
ware on either the server or client; all W hile there are some great

Python web server frame-
works such as Flask,
Django, and Bottle, using

Python on the server side adds complex-
ity for web developers. To use Python
on the web, you also need to support
JavaScript on client-side web pages. To
address this problem, some Python-to-
JavaScript translators, such as JavaScrip-
thon, Js2Py, and Transcrypt, have been
developed.

The Brython (which stands for
Browser Python) project [1] took the
first big step in offering Python as an
alternative to JavaScript by offering a
Python interpreter written in JavaScript.
Brython is a great solution for Python
enthusiasts, because it’s fast and easy to
use. However, it only supports a very
limited selection of Python libraries.

PyScript [2] offers a new, innovative so-
lution to the Python-on-a-web-page prob-
lem by allowing access to many of the Py-
thon Package Index (PyPI) repository li-
braries. The concept behind PyScript is a
little different. It uses Pyodide, which is a
Python interpreter for the WebAssembly
(Wasm) virtual machine. This approach
offers Python within a virtual environ-
ment on the web client.

In this article, I will introduce PyScript
with some typical high school or univer-
sity engineering examples. I will also

Using Python in the browser

 Snake Charmer
PyScript lets you use your favorite Python libraries on client-side
web pages. By Pete Metcalfe

Figure 1: The main components of a PyScript web page.

Ph
o

to
 b

y
G

o
d

w
in

 A
n

g
el

in
e

B
en

jo
 o

n
 U

n
sp

la
sh

54

IN-DEPTH

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

PyScript

the coding is done directly on the web
page. For PyScript to run, it needs three
things (Figure 1):
•	 a definition in the header for the

PyScript CSS and JS links,
•	 a <py‑config> section to define the

Python packages to load, and
•	 a <py‑script> section for the Python

code.
In Figure 1, the <py‑script> section uses
terminal=true (the default) to enable
Python print() statements to go directly
to the web page. A little bit later, I’ll
show you how to put PyScript data into
HTML tags.

Figure 2 shows the running web page.
This math example performs the Python
SymPy simplify function on a complex
equation to reduce the equation to its
simplest form. The pprint() (pretty
print) function outputs the equation into
a more present-
able format on the
page’s py‑terminal
element (the
black background
section shown in
Figure 2).

Debugging
code is always an
issue. The web
browser will
highlight some
general errors in
the PyScript
pages. To see
more detailed Py-
thon errors, right-
click on the page
and select the

Inspect option and
then click on the
Console heading.
Figure 3 shows a
very typical error: a
print() function
missing a closing
quote character.

Calling
PyScript
Functions
In the previous ex-
ample, PyScript was
called just once,
which is similar to
how a JavaScript
<script> block is ex-
ecuted when it is

embedded within a web page’s <body>
section.

There are several ways to call a
PyScript function. You can use the tradi-
tional JavaScript approach of adding a
function reference within a tag reference
as shown in the following button
example:

<button py‑click="my_pyfunc()" U

 id="button1">Call Pyscript</button>

PyScript supports a wide range of ac-
tions. For the button, a click event is de-
fined with the py‑click option, but other
actions such as a double-click
(py‑dblclick) or a mouseover
(py‑mouseover) event could also be
added.

Listing 1 shows a button click action
that calls a function, current_time(), to

print the present time into a PyScript ter-
minal section (Figure 4).

A more Pythonic approach to calling
a PyScript function is available with the
@when API. The syntax for this is:

<py‑script>

 from pyscript import when

 # define id and action,

 # then next line is the function

 @when("click", selector="#button1")

 def my_pyfunc():

 print("Button 1 pressed")

</py‑script>

You can also use the @when function to re-
fresh an HTML tag, which I cover in the
next section.

A Calendar Example
Now I’ll provide a calendar example
(Listing 2) that uses a button and
PyScript to replace the contents of an
HTML tag. To keep things simple, the
Python’s calendar output will be left as
ASCII and an HTML <pre> tag will be
used (Figure 5).

The calendar page has Back and For-
ward buttons (lines 10-11) and a <pre>
section (line 12).

In the <py‑script> section, the when
and calendar libraries are imported on
lines 15-17. These two libraries are part
of the base PyScript/​Python that is
loaded into Pyodide, so a <py‑config>
section is not needed.

Like calling PyScript functions, there
are multiple ways to read and write web
content. PyScript has a built-in display()
function that is used to write to HTML

Figure 2: PyScript using the Python SymPy library.

Figure 3: Debug PyScript with the browser’s Inspect option.

IN-DEPTH
PyScript

55LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

without the user’s authorization. To
allow PyScript to access a local file,
you need to do three key things. To
start, you need to configure a page
with an <input type="file"> tag. To
call a file-picker dialog with a CSV fil-
ter, enter:

tags (lines 20, 26, and 32). The syntax
for the display() function is:

display(*values, target="tag‑id", U

 append=True)

The *value can be a Python variable or
an object like a Matplotlib figure.

The @when function (lines 22 and 28)
connects the Back and Forward button
clicks to the functions back_year() and
forward_year().

PyScript with JavaScript
Libraries
In many cases you’ll want to use Java
Script libraries along with PyScript. For
example, you might want to include Ja-
vaScript prompts or alert messages for
your page. To access a JavaScript li-
brary, add the line:

from js import some_library

Listing 3 shows the code to import the
alert and prompt libraries, then prompts
the user for their name, and finally dis-
plays an alert message with the entered
name (Figure 6).

Reading and Plotting a
Local CSV
File
For a final, more
challenging exam-
ple, I’ll use
PyScript to read a
local CSV file into
a pandas
dataframe and
then use Matplot-
lib to plot a bar
chart (Figure 7).

For security
reasons, web
browsers cannot
access local files

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Current Time</title>

 <l�ink rel="stylesheet" href="https://pyscript.net/

latest/pyscript.css" />

 <s�cript defer src="https://pyscript.net/latest/pyscript.

js"></script>

 </head>

 <body>

 <h1>Py‑click to call a Pyscript Function</h1>

 <!‑‑ add py‑click into the button tag ‑‑>

 <b�utton py‑click="current_time()" id="get‑time"

class="py‑button">Get current time</button>

 <py‑script>

 import datetime

 # this function is called from a button

 def current_time():

 print(datetime.datetime.now())

 </py‑script>

 </body>

</html>

Listing 1: Button Click Action

01 �<html>

02 � <head>

03 � <l�ink rel="stylesheet" href="https://pyscript.net/

latest/pyscript.css" />

04 � <s�cript defer src="https://pyscript.net/latest/

pyscript.js"></script>

05 � <title>Pyscript Calendar Example</title>

06 � </head>

07 �

08 � <body>

09 � <h1>Pyscript Calendar Example</h1>

10 � Move Years:

11 � <button id="btn_back"> Back </button>

12 � <button id="btn_forward"> Forward </button>

13 � <pre id="calzone"></pre>

14 �

15 �<py‑script>

16 �from pyscript import when

17 �import calendar

18 �

19 �thisyear = 2023

20 �display(calendar.calendar(thisyear), target="calzone")

21 �

22 �@when("click", selector="#btn_back")

23 �def back_year():

24 � global thisyear

25 � thisyear ‑= 1

26 � di�splay(calendar.calendar(thisyear),

target="calzone", append=False)

27 �

28 �@when("click", selector="#btn_forward")

29 �def forward_year():

30 � global thisyear

31 � thisyear += 1

32 � di�splay(calendar.calendar(thisyear),

target="calzone", append=False)

33 �

34 �</py‑script>

35 �</body>

36 �</html>

Listing 2: PyScript Yearly Calendar

Figure 4: Button click to call a PyScript function.

56

PyScript

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

<input type="file" id="myfile" U

 name="myfile" accept=".csv">

Next, you must define an event listener
to catch a change in the <input> file. For
this step, two libraries need to be im-
ported, and an event listener needs to
be configured as shown in Listing 4.

Finally, you need to import the Java
Script FileReader and the PyScript
asyncio libraries as follows:

from js import FileReader

import asyncio

The FileReader object is used to read in
the CSV file’s content. The asyncio li-
brary creates background event process-
ing to allow functions to complete suc-
cessfully without timing or delay issues.

Listing 5 shows the full code for read-
ing and plotting a local CSV file. In List-
ing 5, pay particular attention to:
•	 defining a <py‑config> section for the

pandas and Matplotlib (PyPI) libraries
(lines 9-11) and

•	 creating an async function
(process_file(event)).

Note, the async function is launched
from the add_event_listener (line 51)
when the user selects a file.

The CSV file is read into a variable
(line 34), and then the StringIO function

allows the data to
be passed into a
pandas dataframe
(lines 36 and 37).
Line 38 outputs
the dataframe to a py‑terminal
element:

print("DataFrame of:", f.name, "\n",df)

This example only presents bar charts
for the first two rows of data (lines 42-
45), but the code would be modified to
do line plots for multiple rows of data.

Line 47 sends the Matplotlib figure to
the page’s <div id="lineplot">
element:

pyscript.write('lineplot',fig)

Although somewhat complex, this ex-
ample only took 30 lines of Python
code. Good future projects could

Figure 5: PyScript calendar with @when functions.

<py‑script>

 # Use a JS library to show a prompt and alert message

 from js import alert, prompt

 # Ask your name, then show it back

 name = prompt("What's your name?", "Anonymous")

 alert(f"Hi:, {name}!")

</py‑script>

Listing 3: JavaScript Libraries with PyScript

Figure 6: You can use JavaScript libraries in PyScript.

from js import document

from pyodide.ffi.wrappers import add_event_listener

Set the listener to look for a file name change

e = document.getElementById("myfile")

add_event_listener(e, "change", process_file)

Listing 4: Defining an Event Listener

Figure 7: Read and plot a local CSV file as a bar chart.

PyScript

57LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

addition, I often got tripped up with Py-
thon indentation when I was cutting and
pasting code. Overall, however, I was very
impressed with PyScript, and I look for-
ward to seeing where the project goes. nnn

include adding options for sorting,
grouping, and customized plots. It’s
important to note that PyScript can
also be used to save files to a local
machine.

Summary
Using Python libraries such as pandas,
SymPy, or Matplotlib on a client page
can be a very useful feature. It’s also

nice that these PyScript pages don’t re-
quire Python on the client machine.

While working with PyScript, I found
two issues. The call-up is very slow (espe-
cially compared to Brython pages). In

[1]	� Brython: https://​brython.​info/

[2]	� PyScript: https://​pyscript.​net/

Info

01 �<!DOCTYPE html>

02 �<html lang="en">

03 � <head>

04 � <title>Pyscript CSV to Plot</title>

05 � <l�ink rel="stylesheet" href="https://pyscript.net/

latest/pyscript.css" />

06 � <s�cript defer src="https://pyscript.net/latest/

pyscript.js"></script>

07 � <title>Local CSV File to Matplotlib Chart</title>

08 � <!‑‑ Include the Pandas and Matplotlib packages ‑‑>

09 � <py‑config>

10 � packages = ["pandas", "matplotlib"]

11 � </py‑config>

12 � </head>

13 � <body>

14 �

15 � <h1>Pyscript: I�nput Local CSV File and Create a Bar

Chart</h1>

16 � <l�abel for="myfile">Select a CSV file to graph:</

label>

17 � <i�nput type="file" id="myfile" name="myfile" accept=".

csv">

18 �

19 � <div id="lineplot"> </div>

20 � <pre id="print_output"> </pre>

21 � <py‑script output="print_output">

22 �import pandas as pd

23 �import matplotlib.pyplot as plt

24 �from io import StringIO

25 �import asyncio

26 �from js import document, FileReader

27 �from pyodide.ffi.wrappers import add_event_listener

28 �

29 �# Process a new user selected CSV file

30 �async def process_file(event):

31 � fileList = event.target.files.to_py()

32 � for f in fileList:

33 � data = await f.text()

34 � # the CSV file is read as large string

35 � # use StringIO to pass info into Panda dataframe

36 � csvdata = StringIO(data)

37 � df = pd.DataFrame(pd.read_csv(csvdata, sep=","))

38 � print("DataFrame of:", f.name, "\n",df)

39 �

40 � # �create a Matplotlib figure with headings and

labels

41 � fig, ax = plt.subplots(figsize=(16,4))

42 � plt.bar(df.iloc[:,0], df.iloc[:,1])

43 � plt.title(f.name)

44 � plt.ylabel(df.columns[1])

45 � plt.xlabel(df.columns[0])

46 � # Write Mathplot figure to div tag

47 � pyscript.write('lineplot',fig)

48 �

49 �# Set the listener to look for a file name change

50 �e = document.getElementById("myfile")

51 �add_event_listener(e, "change", process_file)

52 �

53 �</py‑script>

54 �</body>

55 �</html>

Listing 5: PyScript CSV File to Bar Chart

You can investigate more neat projects
by Pete Metcalfe and his daughters at
https://​funprojects.​blog.

Author

nnn

58

PyScript

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

https://brython.info/
https://pyscript.net/
https://funprojects.blog

imported engineer from Germany. At
the time, we did everything live on a
single server without any form of
safety net. A CGI script at the top of
the portal page displayed the current
date. However, this caused the (only!)
server to collapse under the load of
what was quite a considerable number
of users, because of the need to launch
a Perl interpreter for every call. I
brought the machine back to life with
a compiled C program that did the
same job but started faster. Later on,
persistent environments such as mod_
perl came along and made things a
thousand times faster.

All Inclusive
Today, the CGI protocol is frowned upon
because a script might tear open a secu-
rity hole in the server environment, and
the startup costs of an external program
that launches for every incoming request
are immense as user numbers increase.
But of course, for my weight barometer,
where the server will field maybe two re-
quests per day, this design is justifiable.
In a scripting language such as Python,
such a mini project would be imple-
mented in next to no time.

But I like the challenge of bundling
adding values and displaying the chart
into one single static Go binary that has
no dependencies. Refreshing various Py-
thon libraries every so often by hand
with pip3 seems like too much trouble.
Once compiled – even if cross-compiled

C apturing datapoints, adding
them to a time series, and
showing values over time
graphically is usually the do-

main of tools like Prometheus. The tool
retrieves the status of monitored systems
at regular intervals and stores the data as
a time series. If outliers occur, the mes-
senger of the gods alerts its human to
the fact. Viewing tools such as Grafana
display the collected time series in dash-
boards spread over the last week or year
as graphs, if so desired, so that even se-
nior managers can see at a glance what’s
going on in the trenches.

However, my el cheapo web host
won’t let me install arbitrary software
packages for this purpose on my rented
virtual server. Plus, maintaining such
complicated products with their continu-
ous updates would be too time consum-
ing for me, anyway. However, there is a
’90s-style CGI interface on the web
server. How hard could it be to write a
CGI program in Go that receives

measured values via HTTPS like an API,
formats the time series generated from
them into an attractive chart, and sends
the results back to the browser in PNG
format? Let’s find out.

Figure 1 shows the graph of a time se-
ries that outputs my weight in kilo-
grams over the past few years (possibly
embellished for this article) as a chart
in the browser after pointing it to the
URL on the server. The same CGI script
also accepts new incoming data. For ex-
ample, if my scale shows 82.5 kilograms
one day, calling

curl '.../cgi/minipro?add=82.5&apikey=U

 <Key>'

will add the value with the current date
to the time series, now permanently
stored on the server. If I replace add=...
in the URL with chart=1, the script will
return the chart with all the values fed in
so far.

Jurassic Tech
The CGI protocol is bona fide dinosaur
technology from the heady ’90s of the
last century. At the time, the first dy-
namic websites came into fashion after
users, having acquired a taste for more
than static HTML, began to crave cus-
tomized content.

It’s a time I remember very well: I
was working at AOL back then, tasked
with freshening up AOL’s website in
San Mateo, California, as a freshly

Mike Schilli works as a
software engineer in the
San Francisco Bay Area,
California. Each month
in his column, which has
been running since 1997,
he researches practical applications of
various programming languages. If you
email him at mschilli@perlmeister.​com
he will gladly answer any questions.

Author

Le
ad

 Im
ag

e
©

 m
at

h
ia

s
th

e
d

re
ad

, p
h

o
to

ca
se

.c
o

m

Track your weight with a CGI script and Go

Scales,
Well?
Mike Schilli steps on the scale every week and records
his weight fluctuations as a time series. To help monitor
his progress, he writes a CGI script in Go that stores the
data and draws visually appealing charts. By Mike Schilli

60 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH
Programming Snapshot – Go CGI Scripting

on another platform – a statically linked
Go program will run until the end of
time. Even if the web host were to up-
grade the Linux distro to a new version
with libraries suddenly disappearing as a
result, the all-inclusive Go binary will
still soldier on.

Getting Started with CGI
If a web server determines that it
needs to respond to a request with an
external CGI script based on its config-
uration, it sets the REQUEST_URI

environment variable to the URL of the
request, among other things, and calls
the associated program or script. The
script then retrieves the information re-
quired to process the request from its
environment variables. In case of a GET
request, for example, you only need
the URL in REQUEST_URI; its path also
includes all the CGI form parameters if
present. As a response to the inquiring
browser, the script then simply uses
print() to write the answer to stdout.
The web server picks up the text

stream and sends
it back to the re-
questing client.

Listing 1 shows
a minimal CGI
program in Go. It
uses the standard
net/​http/​cgi li-
brary, whose
Serve() function

in line 19 parses the incoming request
and then sends the response back to
the server.

To do this, it expects a handler func-
tion as a parameter. The handler func-
tion, defined in line 10, in turn, ex-
pects a writer for the output and a
reader for the incoming request data as
parameters. Calling the Query() library
function on the incoming request URL
inside the handler returns a map that
assigns the names of the incoming CGI
parameters to their values. The for
loop starting in line 14 iterates over all
the entries in the hashmap and outputs
all incoming form parameters and their
values to the w writer.

Static Forever
Compiling and linking the Go code from
Listing 1 creates a binary; simply copy
this into the web server’s cgi/ directory
and make it executable. If the web server
is configured to call the cgi‑test pro-
gram in case of an incoming request to
cgi/cgi‑test, it will return the script’s
output to the requesting web client’s
browser. Figure 2 shows the results from
the point of view of the user submitting
the request in Firefox.

So far, so good – but how do you ac-
tually compile Listing 1? After all, the
idea is to create a binary that runs on
the web host’s Linux distro, which
may be incompatible with the build
environment because it might be miss-
ing some shared libraries present on
the web server. Go binaries typically
only need an acceptable version of the
host system’s libc. What to do? Docker
to the rescue! My web host uses
Ubuntu 18.04, which means that the
Dockerfile in Listing 2 sets up a com-
patible environment with this base
image on my build host.

Figure 1: The author’s weight fluctuations over the years.

01 �package main

02 �

03 �import (

04 � "fmt"

05 � "net/http"

06 � "net/http/cgi"

07 �)

08 �

09 �func main() {

10 � handler := func(w http.ResponseWriter, r *http.Request) {

11 � qp := r.URL.Query()

12 � fmt.Fprintf(w, "Hello\n")

13 �

14 � for key, val := range qp {

15 � fmt.Fprintf(w, "key=%s=%s\n", key, val)

16 � }

17 � }

18 �

19 � cgi.Serve(http.HandlerFunc(handler))

20 �}

Listing 1: cgi-test.go

Figure 2: The Go program in Listing 1 as a CGI script.

61

Programming Snapshot – Go CGI Scripting

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

later, Go only needs to compile the
sources locally and link everything to-
gether. This literally takes just a few
seconds. That’s what I call putting the
fun back into developing and
troubleshooting!

The Makefile in Listing 3 assembles
the image under the docker target (start-
ing in line 9) and assigns it the cgi‑test
tag when you run make docker. To com-
pile the source code, you need to call the
remote target (starting in line 5) later.
This will start a container with docker
run and mount the /build directory in-
side onto the current directory on the
host. This means that the generated bi-
nary within the container will be easily
accessible from outside later.

However, Ubuntu’s golang package
version is almost always woefully out of
date; of course, it’s not even remotely
usable on the fairly ancient Ubuntu dis-
tro running on the web hoster’s box. But
the Dockerfile can easily work around
this; line 7 fetches a tarball with a very
recent Go 1.21 release off the web and
drops its contents into the root directory
of the build environment. Add to that
some tools like Git (Go uses Git to fetch
GitHub packages) and make for the build,
and, presto, you have yourself a Fran-
kenstein distro ready to build a binary
for the web host’s environment.

Well Prepared
To compile Go sources, the Go compiler
often needs to pull the source code of
included packages and compile it before
linking the final binary. A Docker image
without those dependencies installed
will dawdle around in the preparation
phase for minutes at a time during each
build run. It will repeat the process time
and time again for every single minor
change to the source code. To speed up
this phase, line 11 in Listing 2 copies
the Go sources for this project into the
Docker image, and go mod tidy in line
12 precompiles everything. When a

container based
on this image is
then launched 01 �FROM ubuntu:18.04

02 �ENV DEBIAN_FRONTEND noninteractive

03 �RUN apt‑get update

04 �RUN apt‑get install ‑y curl

05 �RUN apt‑get install ‑y vim make

06 �RUN apt‑get install ‑y git

07 �RUN curl htt�ps://dl.google.com/go/go1.21.0.linux‑amd64.

tar.gz >go1.21.0.linux‑amd64.tar.gz

08 �RUN tar ‑C /usr/local ‑xzf go1.21.0.linux‑amd64.tar.gz

09 �ENV PATH="${PATH}:/usr/local/go/bin"

10 �WORKDIR /build

11 �COPY *.go *.mod *.sum /build

12 �RUN go mod tidy

Listing 2: Dockerfile

01 �DOCKER_TAG=cgi‑test

02 �SRCS=cgi‑test.go

03 �BIN=cgi‑test

04 �REMOTE_PATH=some.hoster.com/dir/cgi

05 �remote: $(SRCS)

06 � docker run ‑v `pwd`:/build ‑it $(DOCKER_TAG) \

07 � bash ‑c "go build $(SRCS)" && \

08 � scp $(BIN) $(REMOTE_PATH)

09 �docker:

10 � docker build ‑t $(DOCKER_TAG) .

Listing 3: Makefile.cgi-test

01 �package main

02 �

03 �import (

04 � "fmt"

05 � "net/http"

06 � "net/http/cgi"

07 � "regexp"

08 �)

09 �

10 �const CSVFile = "weight.csv"

11 �const APIKeyRef =
"3669d95841f6d20ff6a5067a2f2919db4fca6e82"

12 �

13 �func main() {

14 � handler := func(w http.ResponseWriter, r *http.Request) {

15 � qp := r.URL.Query()

16 � params := map[string]string{}

17 � for key, val := range qp {

18 � if len(val) > 0 {

19 � params[key] = val[0]

20 � }

21 � }

22 �

23 � apiKey := params["apikey"]

24 � if apiKey != APIKeyRef {

25 � fmt.Fprintf(w, "AUTH FAIL\n")

26 � return

27 � }

28 �

29 � if len(params["chart"]) != 0 {

30 � points, err := readFromCSV()

31 � if err != nil {

32 � panic(err)

33 � }

34 � chart := mkChart(points)

35 � w.Write(chart)

36 � } else if len(params["add"]) != 0 {

37 � san�e, _ := regexp.MatchString(`^[.\d]+$`,
params["add"])

38 � if !sane {

39 � fmt.Fprintf(w, "Invalid\n")

40 � return

41 � }

42 �

43 � err := addToCSV(params["add"])

44 � if err == nil {

45 � fmt.Fprintf(w, "OK\n")

46 � } else {

47 � fmt.Fprintf(w, "NOT OK (%s)\n", err)

48 � }

49 � }

50 � }

51 � cgi.Serve(http.HandlerFunc(handler))

52 �}

Listing 4: minipro.go

62

Programming Snapshot – Go CGI Scripting

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

The actual build process is started by
the shell command in line 7, which calls
go build. If this works without error, a
secure shell via scp finds the final binary
in the current directory (but outside the
container) and copies it onto the target

host. Line 4 uses REMOTE_PATH to specify
its address.

No Messing Around
But that’s enough messing around with
our test balloon. The actual CGI program
that generates new values for the time
series and later displays them graphi-
cally goes by the name of minipro and
can be found in Listing 4. It uses the add
form parameter to accept new weight
measurements from the user via the CGI
interface and stores these measurements
in the weight.csv CSV file on the server
with the timestamp for the current time.
This is done by the addToCSV() function
starting in line 43.

In order to block Internet randos from
banging on the interface, the CGI pro-
gram requires an API key; this string is
hard-coded in line 11. The requesting
API user attaches the secret to the re-
quest as the CGI apikey parameter. The
program on the server will only continue
processing the request if the key matches
the hard-coded value; otherwise, it will
stop at line 25.

Because CGI parameters cannot be
trusted in general, it makes sense to
check their validity with regular ex-
pressions. This is why line 37 sniffs
out the add parameter to see if the
string really looks like a floating-point
number (i.e., if it exclusively consists
of digits and periods). If so, the sane

variable is set to true; if not, line 40
terminates the request and returns an
error message.

Nicely Done
To see a chart of the time series of values
fed in so far, you just set the CGI chart
parameter in the request to an arbitrary
value. In response, the section starting in
line 29 of Listing 4 uses mkChart() to cre-
ate a new chart file in PNG format (see
Listing 5) and calls w.Write() to return
the chart’s binary data to the requesting
browser in line 35. Fortunately, the net/​
http/​cgi library is smart enough to set
the introductory HTTP header to Con‑
tent‑Type: image/png when it examines
the first few bytes of the stream and
finds sequences there that point to a
PNG image.

Listing 5 takes care of managing the
CSV file. Its content consists of the float-
ing-point values of the weight measure-
ments, each of which is accompanied by
a timestamp in epoch format after a
comma in each line. Figure 3 shows
some of the stored data in the file.

Guaranteed Write
In Listing 5, the addToCSV() function
starting in line 10 has the task of accept-
ing new measurements. It opens the CSV
file in O_APPEND mode; this means that
the fmt.Fprintf() write function in line
18 will always append new values, with

01 �package main

02 �

03 �import (

04 � "encoding/csv"

05 � "fmt"

06 � "os"

07 � "time"

08 �)

09 �

10 �func addToCSV(val string) error {

11 � f, err := os.OpenFile(CSVFile,

12 � os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)

13 � if err != nil {

14 � return 0, err

15 � }

16 � defer f.Close()

17 �

18 � _, err = fmt.Fprintf(f, "%s,%d\n", val, time.Now().

Unix())

19 � return 0, err

20 �}

21 �

22 �func readFromCSV() ([][]string, error) {

23 � points := [][]string{}

24 �

25 � file, err := os.Open(CSVFile)

26 � if err != nil {

27 � if os.IsNotExist(err) {

28 � return points, nil

29 � } else {

30 � return points, err

31 � }

32 � }

33 � defer file.Close()

34 �

35 � reader := csv.NewReader(file)

36 � points, err = reader.ReadAll()

37 � return points, err

38 �}

Listing 5: csv.go

Figure 3: The weight measure-
ments as floating-point values
with timestamps.

Programming Snapshot – Go CGI Scripting

63LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

in Listing 7 creates a new image with the
minipro tag under the docker target using
the same Dockerfile I used earlier. Once
this is done, make remote first starts the
container, mounts its working directory
to hold the finished binary later, and
then starts the build and link process
with go build.

If this works without errors, the secure
shell scp copies the binary to the web
host’s CGI directory, as set in REMOTE_
PATH. From there, a browser or curl script
can then call its functions via the web
server, using add to add new datapoints
and then chart to graphically enhance
and visualize the existing dataset. nnn

a current timestamp attached, to the end
of the file.

This approach has a neat side effect. It
ensures that, on POSIX-compatible Unix
systems, lines no longer than PIPE_BUF
(usually 4,096 bytes under Linux) are al-
ways written in full, without another
process possibly interfering and ruining
the line. In the present case, this is not
critically important, because there will
be hardly any requests anyway, but on a
hard working web server where you can-
not guarantee atomicity by default, the
file would quickly become corrupt, un-
less you explicitly set a lock.

Conversely, readFromCSV() starting in
line 22 reads the lines from the CSV file,
and the standard encoding/​csv Go library
package takes apart the comma-sepa-
rated entries. At the end, the function re-
turns a two-dimensional array slice of
strings with two entries per line, for the
value and timestamp.

Spruce It Up with Graphics
The mkChart() function starting in line 10
of Listing 6 fields this matrix of data-
points and generates a graph like the one
shown in Figure 1 from the data. The task
of converting the timestamps from the

Unix format to an easily readable format
for the x-axis is handled automatically by
the go-chart package from GitHub. Line 5
in Listing 6 fetches the package.

Line 32 creates a structure of the type
chart.TimeSeries from the datapoints in
the xVals (timestamps) and yVals
(weight measurements) array slices.
Then, the chart.Chart structure from line
42 illustrates the structure in a chart.
The Render() function in line 49 creates
the binary data of a PNG file, containing
the diagram, both axes, and their leg-
ends from this.

To do so, line 48 creates a new write
buffer in the variable w. The chart’s Ren‑
der() function
writes to the buf-
fer, and Bytes() in
line 50 returns its
raw bytes to the
caller of the func-
tion (i.e., the main
program) and ulti-
mately the inquir-
ing user’s browser.

To assemble the
three source files
into a static bi-
nary, the Makefile

01 �package main

02 �

03 �import (

04 � "bytes"

05 � "github.com/wcharczuk/go‑chart/v2"

06 � "strconv"

07 � "time"

08 �)

09 �

10 �func mkChart(points [][]string) []byte {

11 � xVals := []time.Time{}

12 � yVals := []float64{}

13 � header := true

14 �

15 � for _, point := range points {

16 � if header {

17 � header = false

18 � continue

19 � }

20 � val, err := strconv.ParseFloat(point[0], 64)

21 � if err != nil {

22 � panic(err)

23 � }

24 � added, err := strconv.ParseInt(point[1], 10, 64)

25 � if err != nil {

26 � panic(err)

27 � }

28 � xVals = append(xVals, time.Unix(added, 0))

29 � yVals = append(yVals, val)

30 � }

31 �

32 � mainSeries := chart.TimeSeries{

33 � Name: "data",

34 � Style: chart.Style{

35 � StrokeColor: chart.ColorBlue,

36 � FillColor: chart.ColorBlue.WithAlpha(100),

37 � },

38 � XValues: xVals,

39 � YValues: yVals,

40 � }

41 �

42 � graph := chart.Chart{

43 � Width: 1280,

44 � Height: 720,

45 � Series: []chart.Series{mainSeries},

46 � }

47 �

48 � w := bytes.NewBuffer([]byte{})

49 � graph.Render(chart.PNG, w)

50 � return w.Bytes()

51 �}

Listing 6: chart.go

DOCKER_TAG=minipro

SRCS=minipro.go chart.go csv.go

BIN=minipro

REMOTE_PATH=some.hoster.com/dir/cgi

remote: $(SRCS)

 docker run ‑v `pwd`:/build ‑it $(DOCKER_TAG) \

 bash ‑c "go build $(SRCS)" && \

 scp $(BIN) $(REMOTE_PATH)

docker:

 docker build ‑t $(DOCKER_TAG) .

Listing 7: Makefile.build

nnn

64

Programming Snapshot – Go CGI Scripting

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

The Z840 has a total of seven net-
work interface cards (NICs) installed:
two on the motherboard and five more
on two separate add-in cards. My sec-
ond server with a backup WireGuard
instance has 4 gigabit NICs in total.
Figure 1 is a screenshot from NetBox
that shows how everything is con-
nected to my two switches and the ISP-
supplied router for as much redun-
dancy as I can get from a single home
network connection.

The Problem
On my B250m-based server, I had previ-
ously used one connection directly to the
ISP’s router and the other three to the
single no-name switch, which is con-
nected to the ISP router from one of its
ports. All four of these connections are
bonded with the balance‑alb mode, as
you can see in the netplan config file
(Listing 1).

For those who are not familiar with
the term, bonding (or teaming) is
using multiple NIC interfaces to create
one connection. The config file in List-
ing 1 is all that is needed to create a
bond in Ubuntu. Since 2018 in version
18.04, Canonical has included netplan

I recently bought a used HP Z840
workstation to use as a server for a
Proxmox [1] virtualization environ-
ment. The first virtual machine (VM)

I added was an Ubuntu Server 22.04 LTS
instance with nothing on it but the Cock-
pit [2] management tool and the Wire-
Guard [3] VPN solution. I planned to use

WireGuard to connect to my home net-
work from anywhere, so that I can back
up and retrieve files as needed and man-
age the other devices in my home lab.
WireGuard also gives me the ability to
use those sketchy WiFi networks that you
find at cafes and in malls with less worry
about someone snooping on my traffic.

Bonding your network adapters
for better performance

Together
Combining your network adapters can speed up network performance – but a little more testing
could lead to better choices. By Adam Dix

Figure 1: Topology of my home network.Ph
o

to
 b

y
A

n
d

re
w

 M
o

ca
 o

n
 U

n
sp

la
sh

65LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH
Teaming NICs

personal preference, though that part
wouldn’t be required for this config.
The last section is where you define
what type of bonding you would like
to use, and I always choose to go with
balance‑alb or adaptive load balancing
for transmit and receive, as it fits the
homelab use case in my experience
very well. See the box entitled “Bond-
ing” for a summary of the available
bonding options.

The best schema for bonding in your
case might not be the best for me. With
that in mind, I would recommend re-
searching your particular use case to see
what others have done. For most
homelab use where utilization isn’t
constantly maxed out, I believe you will
typically find that balance‑alb is the
best option.

as the standard utility for configuring
networks. Netplan is included in both
server and desktop versions, and the
nice thing about it is that it only re-
quires editing a single YAML file for
your entire configuration. Netplan was
designed to be human-readable and
easy to use, so (as shown in Listing 1)
it makes sense when you look at it and
can be directly modified and applied
while running.

To change your network configuration,
go to /etc/netplan, where you will see
any YAML config file for your system. If
you are running a typical Ubuntu Server
22.04 install, it will likely be named
00‑installer‑config.yaml. To change
your config, you just need to edit this
file using nano (Ubuntu Server) or
gnome-text-editor (Ubuntu Desktop),

save it, and run sudo netplan to apply
the changes. If there are errors in your
config, netplan will notify you upon
running the apply command. Note that
you will need to use spaces in this files
(not tabs), and you will need to be
consistent with the spacing.

In Listing 1, you can see that I have
four NICs and all of them are set to
false for DHCP4 and DHCP6. This en-
sures that the bond gets the IP ad-
dress, not an individual NIC. Under
the bonds section, I have made one in-
terface called bond0 using all four
NICs. I used a static IP address, and so
I kept DHCP set to false for the bond
also. Since I configured a static IP ad-
dress, I also need to define the default
gateway under the routes section, and
I always define DHCP servers as a

network:

 version: 2

 renderer: networkd

 ethernets:

 enp6s0:

 dhcp4: false

 dhcp6: false

 enp7s0:

 dhcp4: false

 dhcp6: false

 enp2s4f0:

 dhcp4: false

 dhcp6: false

 enp2s4f1:

 dhcp4: false

 dhcp6: false

 bonds:

 bond0:

 dhcp4: false

 dhcp6: false

 interfaces:

 ‑ enp6s0

 ‑ enp7s0

 ‑ enp2s4f0

 ‑ enp2s4f1

 addresses: [192.168.0.20/24]

 routes:

 ‑ to: default

 via: 192.168.0.1

 nameservers:

 addresses: [�8.8.8.8, 1.1.1.1,
8.8.4.4]

 parameters:

 mode: balance‑alb

 mii‑monitor‑interval: 100

Listing 1: Netplan Configuration File

Bonding options available for Linux systems include:

• �balance‑rr – a round robin policy that sends packets in order from one to the next.
This does give failover protection, but in my opinion, it isn’t as good for mixed-speed
bonds as some of the other options because there is no “thought” put into which NIC
is sending packets. It’s simply round robin, one to the next to the next ad infinitum.

• �active‑backup – simple redundancy without load balancing. You can think of this as
having a hot spare. One waits till the other fails and picks up. This can add consis-
tency if you have a flaky NIC or NIC drivers but otherwise is simply one NIC doing
nothing for most of the time. This would be a good option, though, if you have a
10G primary NIC to use all of the time and a 1G NIC for backup in case it fails.

• �balance‑xor – uses a hashing algorithm to give load balancing and failover protec-
tion using an additional transmit policy that can be tailored for your application.
This option offers advantages but is one of the more difficult policies to optimize.

• �broadcast – sends everything from everywhere. While that may sound effective, it
adds a lot of noise and overhead to your network and is generally not recom-
mended. This is the brute force, shotgun approach. It offers redundancy but for
most applications is wasteful of energy without necessarily offering a higher level of
consistency.

• �802.3ad – uses a protocol for teaming, which must be supported by the managed
switch you are connecting to. That is its main pitfall, as it requires a switch that sup-
ports it. With 802.3ad, you would create link aggregation groups (LAGs). This is con-
sidered the “right” way to do it by folks who can always afford to do things the
“right” way with managed switches. 802.3ad is the IEEE standard that covers team-
ing and is fantastic if all of your gear supports it.

• �balance‑tlb – adaptive load balancing; sends packets based on NIC availability but
does not require a managed switch. This option offers failover and is similar to bal‑
ance‑alb with one key difference: Incoming packets are simply sent to whatever NIC
was last used so long as it is still up. In other words, this load balances on transmit
but NOT on receive.

• �balance‑alb – the same as balance-tlb but also balances the load of incoming pack-
ets. This gives the user failover as well as transmit and receive load-balancing with-
out requiring a managed switch. For me, this is the best option. I have not tested to
see if there is a noticeable difference between balance‑alb and balance‑tlb, but I sus-
pect that for a home server and homelab use there won’t be. I would recommend
testing the difference between alb and tlb if using this in a production environment
as there may be unintentional side effects to the extra work being done on the re-
ceive side in terms of latency of utilization.

Bonding

66

Teaming NICs

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

IN-DEPTH

Results
Figures 3 and 4 show network speeds
and ping times. You can see that by
bonding the single NIC that was previ-
ously dedicated to WireGuard into a
team with the other 5 NICs I was able
to achieve better ping times and also
better speeds. More importantly, the
WireGuard speeds were very consistent.
Across five runs, I only saw a variation
of 0.05Mbps maximum with the six
bonded NICs in Proxmox versus a varia-
tion of up to 0.45Mbps max in speed
variance when using the dedicated NIC.
With my previous four NIC B250M
setup, the consistency was in the mid-
dle at about 0.34Mbps variance, but the
speeds were about 0.2Mbps slower on
average.

Conclusion
Some of you are likely thinking yeah, of
course six NICs are better than one!
But the moral of the story is that it all
depends on the traffic. When I went
back and looked at what the services
running on the other VMs were doing,
there wasn’t much traffic, and they

Findings
What I discovered was that setting up
Proxmox with a dedicated port for Wire-
Guard and the remaining ports bonded
for all other VMs actually resulted in
slower and less consistent speeds for Wi-
reGuard than what I had been getting on
my previous B250m-based machine with
bonded NICs. This is something which I
didn’t expect, but in retrospect, perhaps
I should have.

The initial plan for my new gear was
to use one NIC for management only,
one for WireGuard only, and the re-
maining 5 NICs for all of my other VMs
on the Proxmox server. My expectation
was that having a dedicated NIC used
only for the WireGuard VPN would
help me to realize faster speeds but
also more consistent speeds because
the VPN would be independent of my
other VMs’ network performance. Al-
though that would mean no redun-
dancy for WireGuard on that individ-
ual machine, I didn’t care, because I
now had two servers running. If my
new server went down, I could simply
connect to the old one.

After experimenting with the config-
uration, I eventually discovered it was
better not to put the VPN on a separate
NIC but to use a single port for man-
agement only and to team the other 6
NICs in my Proxmox server as that re-
sulted in the best speed and consis-
tency running WireGuard, regardless
of the fact that all of my other VMs are
using that same bond. Figure 2 shows
the configuration. You will see 10 NICs
in Figure 2, but three of them are not
running. This is an oddity of some
quad-port cards in Proxmox. Run the
following command to reload the net-
work interface configuration on an
hourly basis:

ifreload ‑a

This command ensures I get all six up
and running, albeit with a “failure”
each time I ifreload. (Note that it isn’t
actually a failure since those NICs
don’t actually exist. You might encoun-
ter this problem if you decide to use
Proxmox with a bonded quad-port
card.)

Figure 2: Proxmox network configuration.

Figure 3: Comparing network speeds. Figure 4: Comparing ping times.

Teaming NICs

67LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

IN-DEPTH

beneficial, but for the workload my serv-
ers are running, bonding all of the con-
nections gives the best results.

Good luck with your homelab, and
definitely check out the tteck GitHub
page [4] for more on Proxmox helper
scripts. nnn

were managing anyway. Furthermore, I
am either using WireGuard, in which
case I am locally connected and the
speed from my VPN connection to the
VM is local, or else I am using Home
Assistant or Paperless from its web in-
terface without having WireGuard run-
ning, in which case I don’t really care if
the VPN is going quickly at that mo-
ment or not. If I am at the cafe on my
VPN and looking at my camera through
Home Assistant, which is probably the
worst case scenario for me, then there
are enough hops that any speed loss
from sharing a bond is negated by the
latency of that many hops anyway.
With all of this in mind, my best bet
was to put as many NICs together as
possible in balance‑alb mode.

Lastly I would say to homelabbers,
you’ve got to test to find out. With test-
ing, I quickly realized I was leaving per-
formance on the table for no good rea-
son. If I were running services that had
lots of traffic or perhaps with a half
dozen people using my Plex media
server, then reserving a single dedicated
NIC for the VPN server would have been

Adam Dix is a me-
chanical engineer
and Linux enthusi-
ast posing as an
English teacher after
playing around a
bit in sales and
marketing. You can check out some of
his Linux work at the EdUBudgie Linux
website (https://​www.​edubudgie.​com).

Author

[1]	� Proxmox:
https://​www.​proxmox.​com/​en/

[2]	� Cockpit:
https://​cockpit‑project.​org/

[3]	� WireGuard:
https://​www.​wireguard.​com/

[4]	� tteck Proxmox GitHub page:
https://​github.​com/​tteck/​Proxmox

Info

nnn

Teaming NICs

IN-DEPTH

https://www.edubudgie.com
https://www.proxmox.com/en/
https://cockpit-project.org/
https://www.wireguard.com/
https://github.com/tteck/Proxmox

converted, and read into a computer as
digital values, and a flight simulator
might have several hundred inputs. To
illustrate the problem, in a flight simu-
lator that acquires data from 32 analog
inputs at 50Hz, the overall sampling
rate is 1,600 samples per second. Fur-
thermore, the data must be sampled
with sufficient resolution (or accuracy),
typically 12-16 bits, and any latency re-
sulting from data acquisition by the
simulator modules must be minimized.
To avoid any delays caused by simula-
tor modules waiting to capture data, a
dedicated I/​O system can acquire the
data and transfer it to the simulator
modules over a local network.

I n a flight simulation, the equations
must be solved at a sufficiently fast
rate that the motion (or dynamics)
of the simulated aircraft appears to

be smooth and continuous, with no de-
lays or abrupt changes resulting from the
computations [1]. Typically, the real-time
software in a flight simulator updates at
least 50 times per second. In other words,
all the computations must be completed
within 20ms, including the inputs from
controls, levers, knobs, selectors, and
switches, which must be sampled within
the 20ms frame.

Data acquisition of analog and digital
inputs is potentially slow. In the case of
analog inputs, the signals are sampled,

MakerSpace
I2C flight simulator interface
on a Raspberry Pi

Flying High
A Raspberry Pi running Linux with a custom I2C card and a
small power supply provides an interface for a real-time
flight simulator. By Dave Allerton

Figure 1: Simulator architecture.

Le
ad

 Im
ag

e
©

 in
n

o
va

ri
, f

o
to

lia
.c

o
m

69LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

MAKERSPACEMAKERSPACERPi Flight Simulator Interface

Requirements
A real-time research flight simulator [2]
currently installed at Cranfield Univer-
sity (Cranfield, UK), runs on a local net-
work of eight PCs, with the simulation
functions partitioned as shown in Fig-
ure 1. The I/​O system provides an inter-
face between the simulator and the soft-
ware modules that comprise: the model-
ing of the aircraft aerodynamics and the
engine dynamics, aircraft systems, flight
displays, navigation, avionics, an in-
structor station, control loading, sound
generation, flight data recording, three
image generators for a visual system,
and an optional connection to Matlab.
Data is transmitted over the network as
broadcast Ethernet UDP packets.

Previously, the I/​O system was based
on a PC with a set of industrial I/​O cards
to acquire digital and analog inputs and
generate digital and analog outputs.
However, the interface cards and the PC
used in this I/​O system were obsolete,
and the Raspberry Pi (RPi) offered a po-
tential replacement. The RPi has suffi-
cient performance to compute the I/​O
functions in real time, and much of the
existing C code could be reused to run
under the RPi’s Linux operating system.
The RPi Ethernet port provides UDP con-
nection to the simulator computers.

The overall structure of the I/​O system
is shown in Figure 2. The simulator out-
puts are connected to an existing break-
out card, which provides interconnec-
tions to the simulator and signal condi-
tioning. The analog multiplexer selects
one of 32 inputs, where the channel
number (0-31) is given by a 5-bit input.
The digital multiplexer selects one of
four groups of 8 bits, where the channel
number (0-3) is given by a 2-bit input.
The selected analog channel is sampled
by an analog-to-digital (A/​D) chip, and
the digital inputs are read into an 8-bit
parallel buffer. The four analog outputs
drive an electrical control loading sys-
tem, which provides an artificial feel for
the control column and rudder pedals.
The breakout card and the I/​O interface
are connected by a 50-way ribbon cable.

The primary requirement was to pro-
vide an I/​O interface compatible with
the RPi, capable of sampling 32 analog
inputs and 32 digital inputs at 50Hz and
generating four analog outputs and 24
digital outputs, also at 50Hz, where the
resolution of the A/​D conversion for the

flight simulator is 12 bits. Because no
commercial I/​O cards for the RPi met
this specification in terms of the number
of channels, resolution, and sampling
rate, a custom solution was developed.

I2C
The 40 GPIO lines of the RPi include
support for I2C transfers. The I2C proto-
col, originally developed by Philips [3],
is an interesting approach to interfacing,
requiring only two lines to transfer data
between devices connected to an I2C
bus: a serial data line (SDA) and a serial
clock line (SCL). For the RPi, SDA and
SCL are included in the GPIO pinout. I2C
chip pinouts provide SDA and SCL, a ref-
erence voltage, ground, and control pins.
Additionally, some I2C chips include pins
to define the device address. The I2C
protocol offers two advantages: First, the
connection to an RPi only requires a few
lines; second, a wide range of integrated
circuits (ICs) is available for the majority

of I/​O functions, typically costing less
than $10.

One further attraction of an I2C interface
is the simplicity of programming. Most
transfers only require output of the device
address to select a specific register of a
chip and then transfer of data to or from
an external device. I2C chips are compliant
with the I2C data transfer protocol, so a de-
signer only needs to ensure that the RPi
activates the SDA and SCL pins in accor-
dance with the protocol, which is provided
in software by an I2C driver.

Several I2C libraries are available for
the main programming languages, in-
cluding i2c-tools and wiringpi, simplify-
ing the development of application soft-
ware for I2C devices. The i2c-dev library
is integrated with libc for the RPi and,
for programming in C, includes the ap-
propriate header files i2c.h and
i2c‑dev.h.

A number of manufacturers support I2C
for analog and digital data transfers. The

Figure 2: Interface system.

70 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

RPi Flight Simulator InterfaceMAKERSPACE

One MCP23008 is configured for eight
outputs to drive the two multiplexers,
and a second MCP23008 is configured
for eight inputs to read the digital inputs.
The MCP3221 has one analog input in
the range 0-5V, and the MCP4728 pro-
vides four analog outputs in the range
0-5V. The pin connections of these three
integrated circuits are shown in Figure 3.

The 5V supply reference VDD, the 0V
ground reference VSS, and the I2C sig-
nals SCL and SDA are common to all
three ICs. For the MCP23008, the address
lines A0, A1, and A2 can be pulled up to
VDD or grounded to select up to eight
addresses. The data lines GP0-GP7 pro-
vide 8-bit input or output. The reset line
¬RST is pulled up to VDD and the inter-
rupt line INT is not used. For the
MCP3221, the single-ended analog input
is connected to pin 3. For the MCP4728,
the four analog outputs are available at
pins 6-9. The ready RDY line is not used
and the output latching pin ¬LDAC line
is grounded.

In effect, the board reduces to seven
ICs, plus two support ICs, with five

Microchip Technology family of devices
was selected for the I/​O system because
it met the requirements and the cost
constraints and operates within the
0-5V range of the simulator equipment.
The MCP23008 parallel I/​O expansion IC
is an 18-pin chip, with eight data lines
that can be set individually as inputs or
outputs. The MCP3221 IC provides 12-bit
A/​D conversion with a sampling rate in
excess of 20,000 samples per second. The
MCP4728 IC provides four 12-bit digital-
to-analog outputs, with a conversion time
of less than 6µs. The base addresses of
these devices are factory set but can be
modified by selection of the address lines
or by reprogramming the address (not
recommended for the faint-hearted). Sur-
face-mount variants were selected for the
interface printed circuit board (PCB), al-
though many I2C chips are also available
as dual in-line (DIL) packages.

The interface also includes connectors
to the breakout card and a voltage level
translator to connect the RPi with exter-
nal inputs and outputs operating at 5V. A
Texas Instruments PCA9306 converts SDA

and SCL signals between the different
voltage levels; the Microchip Technology
components are connected to external de-
vices requiring a 5V reference, whereas
the RPi operates with a 3.3V reference.

System Design
The requirement of the I/​O system was
to provide five functions:
•	 Controlling two multiplexers of the

breakout card
•	 Reading the 32

multiplexed digi-
tal inputs

•	 Reading the 32
multiplexed ana-
log inputs

•	 Driving four an-
alog outputs
(control loading
system)

•	 Providing digital
outputs for the
multiplexers, the
simulator lamps,
and an LED di-
agnostics panel

Figure 3: Microchip I2C chipset.

01 �buf[0] = 0;

02 �buf[1] = 0; /* set for 8 outputs */

03 �

04 �messages[0].addr = MUX_ADR;

05 �messages[0].flags = 0;

06 �messages[0].len = 2;

07 �messages[0].buf = buf;

08 �packets.msgs = messages;

09 �packets.nmsgs = 1;

10 �if (ioctl(i2c, I2C_RDWR, &packets) < 0)

11 � I2Cerror("unable to set the MUX dir reg\n");

Listing 1: Setting MUX

01 �for (chn=0; chn<=31; chn+=1)

02 �{

03 � outbuf[0] = �9; /* reg 9 channel number for

analogue mux */

04 � outbuf[1] = (unsigned char) chn;

05 �

06 � messages[0].addr = MUX_ADR;

07 � messages[0].flags = 0;

08 � messages[0].len = 2;

09 � messages[0].buf = outbuf;

10 � packets.msgs = messages;

11 � packets.nmsgs = 1;

12 � if (ioctl(i2c, I2C_RDWR, &packets) < 0)

13 � I2Cerror("�unable to set the analogue MUX dir

reg");

14 �

15 � messages[0].addr = ADC_ADR;

16 � messages[0].flags = I2C_M_RD;

17 � messages[0].len = 2;

18 � messages[0].buf = inbuf;

19 � packets.msgs = messages;

20 � packets.nmsgs = 1;

21 � if (ioctl(i2c, I2C_RDWR, &packets) < 0)

22 � I2Cerror("unable to read ADC ch=%d\n", chn);

23 �

24 � AnalogueData[chn] = �(((unsigned int) inbuf[0] & 0xf)

<< 8) + (unsigned int) inbuf[1];

25 �}

Listing 2: Sampling Analog Input Channels

71LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

RPi Flight Simulator Interface MAKERSPACE

MCP23008 ICs for digital input, digital
output, and multiplexer control (40
bits); an MCP3221 for analog input;
and an MCP4728 for analog output.
One of the MCP23008 ICs drives eight
outputs for an LED display, an LM7805
voltage regulator provides a stable 5V
reference for the A/​D chip and a
PCA9306 voltage level translator con-
verts I2C signals between the RPi
(3.3V) and the Microchip Technology
ICs (5V). An additional I2C temperature
sensor was included on the board.

Software
For the RPi model 3, the I2C driver is en-
abled by running raspi‑config and se-
lecting the I2C configuration setting
(400KHz baud rate). With the I2C board
connected, the terminal command

i2cdetect ‑y ‑1

identifies the I2C devices and their spe-
cific addresses. The relevant I2C header
files must be included, and the I2C ad-
dresses of the devices are defined, in the
program to improve readability:

#include <linux/i2c.h>

#include <linux/i2c‑dev.h>

#define DIGITAL_OUTPUT1_ADR 0x20

#define DIGITAL_OUTPUT2_ADR 0x21

#define DIGITAL_INPUT_ADDR 0x22

#define MUX_ADR 0x23

#define LEDS_ADR 0x24

#define ADC_ADR 0x4d

#define DAC_ADR 0x60

Before accessing the I2C devices, it is es-
sential to check that they are addressable
with a simple test:

i2c = open("/dev/i2c‑1", O_RDWR); U

 /* check I2C device is available */

if (i2c < 0)

 I2Cerror("unable to access I2C U

 bus\n");

if (ioctl(i2c, I2C_SLAVE, ADC_ADR) U

 < 0) /* check A/D is accessible */

 I2Cerror("unable to access ADC U

 (%2x)\n", ADC_ADR);

The open function checks that access to
the I2C devices is enabled. The ioctl call
checks specific devices, in this case the

A/​D chip with an address ADC_ADR; this
ioctl call is repeated for all the devices
in use.

Two C structures are defined to access
the I2C devices, where the fields of the
structures are defined in the header file
i2c‑dev.h:

struct i2c_rdwr_ioctl_data packets;

struct i2c_msg messages[1];

Because the MCP23008 8-bit bidirec-
tional buffers are dedicated to input or
output, the direction can be set on ini-
tialization. For example, the multi-
plexer (MUX) is set as an output in
Listing 1.

Similar code is used to set the other
8-bit buffers for input or output. As an
example, sampling the 32 analog input
channels is illustrated by the code in
Listing 2. The multiplexer is set to the
channel value chn, and the A/​D chip
value is read as 2 bytes to the array
inbuf. The result is formed by combin-
ing the most significant four bits in
inbuf[0] with the least significant 8
bits in inbuf[1], which is stored in

Figure 4: I/​O system schematic.

72 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

RPi Flight Simulator InterfaceMAKERSPACE

and data throughput. With the GNU
GCC tool chain, programming of the
I2C devices was straightforward and re-
quired only a few lines of code to ac-
cess each device.

The RPi provides a dedicated headless
I/​O system, loading and running auto-
matically after power-up and with diag-
nostic information on the system status
provided by a small LED panel. The in-
terface provides raw I/​O data for the
simulator modules, enabling any scaling
or conversion to be applied in the
modules.

A Raspberry Pi running under Linux
with an I2C interface and a small power
supply replaced a PC with two large in-
dustrial I/​O boards, reducing both the
footprint and the cost of the I/​O system
for a real-time flight simulator. Much of
the existing I/​O software was reused,
and no changes were required to the
simulator software. nnn

array AnalogueData[] of 32-bit unsigned
integers. With the I2C configured for a
baud rate of 400Kbits/​s, an RPi 3
Model B samples 32 analog inputs in
8.4ms, which is less than half the 20ms
frame time.

For the flight simulator, after initial-
ization, the I/​O system repeatedly exe-
cutes a loop that comprises broadcast-
ing a UDP packet containing the sam-
pled data, reading 32 analog inputs,
reading 32 digital inputs, writing four
analog outputs, writing four digital
outputs, responding to UDP packets
from the simulator PCs, and updating a
small LED display. The interface is
scalable and includes expansion for
additional digital inputs and outputs.

Additionally, the RPi interface provides
a timing reference for the simulator,
ensuring accurate maintenance of the
frame rate.

Board Design
The schematic is shown in Figure 4. The
PCB was produced as a four-layer board
(120mmx95mm) by Eagle CAD software
(Figure 5). The design illustrates the
simplicity of I2C interfacing for the data
acquisition application.

Observations
I2C is a mature and stable protocol sup-
ported by a wide range of integrated
circuits in both DIL and surface-mount
formats, mostly costing less than $10.

The RPi provides
an interface for
I2C devices, re-
quiring only two
lines plus power
and ground so
that construction
of an interface
with breadboard,
wire-wrap, or
PCB is straight-
forward. For the
flight simulator
application, I2C
fully meets the
requirements in
terms of sampling
rates, resolution, Figure 5: I/​O system PCB layout.

[1]	� Allerton, D. J. Principles of Flight Sim-

ulation. John Wiley and Sons, 2009

[2]	� Allerton, D. J. Flight Simulation Soft-

ware: Design, Development and Test-

ing. John Wiley and Sons, 2023

[3]	� Anonymous. I2C-Bus Specification and

User Manual, Rev. 7.0 NXP Semicon-

ductors document UM10204, 2012:

https://www.nxp.com/docs/en/user-

guide/UM10204.pdf

Info

nnn

73LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

RPi Flight Simulator Interface MAKERSPACE

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

adopted directly from, BCPL. Although
BCPL also supported characters and
bytes, the lack of richer types was ad-
dressed in C, which became the pro-
gramming language of choice for Unix
(and subsequently Linux), leaving BCPL
mostly for academic applications. Sev-
eral groups developed compilers, operat-
ing systems, software utilities, commer-
cial packages, and even flight simulation
software in BCPL, but for the most part,
BCPL has been forgotten.

The demise of BCPL in both academia
and industry is disappointing, particularly
because it is a powerful teaching lan-
guage, introducing students to algo-
rithms, software design, and compiler de-
sign. Later, languages such as Pascal and
Modula-2 became popular languages to
introduce concepts in computer science
but have been superseded by Java, Py-
thon, and C++. Whereas the learning
curve for BCPL is small, enabling stu-
dents to become productive in a short
time, the complexity of languages such as
C++ can be a barrier to students learning
their first programming language.

The BCPL Language
The example in Listing 1 of a small BCPL
program computes factorial values from
1! to 5!. Because C was developed from

I n the 1960s, the main high-level
programming languages were For-
tran, Basic, Algol 60, and COBOL.
To optimize code or to provide

low-level operations, assembler program-
ming offered the only means to access
registers and execute specific machine in-
structions. BCPL, which was used as a
teaching language in many universities,
provided a language with a rich syntax,
addressed the scoping limitations of the
other languages, and had low-level op-
erations such as bit manipulation and
computation of variable addresses.

Where BCPL differs from the other lan-
guages is that it is typeless; all variables
are considered to be a word, typically 16
or 32 bits. Programmers can access indi-
vidual bits and bytes of a word, perform
both arithmetic and logical operations on
words, compute the address of a word, or
use a word as a pointer to another word.
One further novel aspect of BCPL is that
the compiler is small and written in BCPL,
producing intermediate code for a virtual
machine and simplifying the development
of the compiler for a wide range of com-
puters. BCPL was used on mainframe
computers and minicomputers in the
1970s and microprocessors in the 1980s.

The early developers of Unix were in-
fluenced by, and many aspects of C were Le

ad
 Im

ag
e

©
 v

id
eo

d
o

ct
o

r,
12

3R
F.

co
m

BCPL for the Raspberry Pi

Before C
The venerable BCPL procedural structured programming
language is fast to compile, is reliable and efficient, offers a
wide range of software libraries and system functions, and
is available on several platforms, including the Raspberry Pi.
By Dave Allerton

MakerSpace

74 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

MAKERSPACEMAKERSPACE BCPL

BCPL, the syntax of both languages is
similar. The include directive in C is a
GET directive in BCPL, the assignment
operator = in C is := in BCPL, and the
fences (curly brackets) { and } are iden-
tical. In C the address of a variable a is
denoted by &a, whereas in BCPL it is
given by @a. Indirection, or the use of
pointers, is given by *a in C or !a in
BCPL. Arrays are organized so that a!b
in BCPL corresponds to a[b] in C.

The GET directive includes the com-
mon procedures and definitions
needed in the compilation of a pro-
gram. The procedure start is similar to
main in C, where the VALOF keyword de-
notes that start is a function with the
result returned by the RESULTIS key-
word. The variable i, a local variable
of the procedure start, is implicitly de-
fined at the start of the FOR loop, which
is executed five times. The writef func-
tion is similar to printf in C. The re-
cursive function fact tests whether n is
zero and returns either 1 or n*(n‑1)!,
where the parameter n is a local vari-
able of the procedure fact.

In BCPL, a variable is defined as a
word that can represent an integer, a bit
pattern, a character, a pointer to a string
of characters, a floating-point number, or
an address. A programmer can apply
arithmetic operators, logical operators,
shift operators, an address operator, or
indirection to a variable – the compiler
assumes that the programmer knows
what they are doing and, subject to syn-
tactic and sematic compilation checks,
places very few constraints on program-
ming constructions. Arguably, C and
BCPL fall into the category of languages
that provide almost unlimited power for
a programmer with very few checks on
their intention.

Both C and BCPL allow sections of a
program to be compiled separately (e.g.,
to provide a library of functions). Global
variables and procedures in BCPL,
which are similar to external variables
and functions in C, can be accessed by
all sections of a program, whereas static
variables are only accessible from the
section in which they are declared. The
other category of variables is local or dy-
namic variables, which are declared and
used in the same way as C. When a local
variable is declared, space is allocated
on a stack, which grows and shrinks dy-
namically, typically on entry to and exit

from a procedure, respectively, enabling
procedures to be called recursively.

Portability
BCPL was developed by Martin Richards
in the Computer Laboratory at the Uni-
versity of Cambridge. His more recent
Cintcode implementation is extensive
and provides numerous examples of cod-
ing, mathematical algorithms, and even
operating system functions. The advan-
tages of this implementation are consid-
erable: It is fast to compile, is reliable
and efficient, and offers a wide range of
software libraries and system functions.
It is also available on several platforms,
including the PC and the Raspberry Pi.
The only drawback is the loss of speed
from interpreting the compiled code.

I refer you to Martin Richard’s text-
book [1], and his website [2] which in-
cludes a version of Cintcode, that is
straightforward to download and imple-
ment on an RPi. Also, a guide directed
at young people programming a Rasp-
berry Pi [3] provides an extensive de-
scription of BCPL and the Cintcode
implementation and numerous exam-
ples of BCPL programs.

For the programmer intending to write
applications in BCPL that exploit the
processing power of the ARM cores of a
Raspberry Pi, a BCPL compiler generat-
ing ARM instructions directly is likely to
produce code which runs considerably
faster than interpreted code. For other
users less concerned with processing
speed, the tools and support provided by
the Cintcode implementation of BCPL
offer a stable and reliable platform.

BCPL for the Raspberry Pi
The arrival of the Raspberry Pi with its
ARM cores, network connection, sound
and video outputs, USB ports, and I/​O
interface running under the Linux op-
erating system has encour-
aged the development of a
range of programming lan-
guages for this platform. A
code generator for BCPL that
I developed compiles BCPL
directly to ARM machine
code, which can be linked
with the standard Linux gcc
toolset. The compiler (7,000
lines) compiles itself in less
than 0.2 seconds on a Rasp-
berry Pi 4B.

This 32-bit implementation of BCPL
compiles a BCPL program prog.b to
prog.o, where prog.o is a Linux object
module linked with two libraries –
blib.o and alib.o – by the gcc linker to
produce an executable ELF module,
prog. The library blib.b is written in
BCPL and contains the common BCPL li-
brary functions. A small library alib.s is
written in Linux assembler and contains
low-level functions to access the Linux
runtime environment.

Although the gcc linker builds the
executable program, the object code
produced by the compiler contains
only blocks of position-independent
code, requiring no relocation. At runtime,
alib initializes the BCPL environment,
setting up the workspace for the stack
and global and static variables. Strictly,
gcc is only used to generate a Linux-
compatible module that can be loaded,
whereas the linking of a BCPL program
and libraries is performed by alib.

Notes for Developers
cThe compiler uses registers r0 to r9

for arithmetic operations, logic opera-
tions, and procedure calls. The code gen-
erator attempts to optimize the code by
keeping variables in registers, minimiz-
ing the number of memory accesses.

Register rg points to the global vector,
and register rp is the BCPL stack pointer
or frame pointer. Procedure linkage, pro-
cedure arguments, and local variables
are allocated space in the current frame.
Stack space is claimed on entry to a pro-
cedure and released on return from a
procedure. The link register lr holds the
return address on entry to a procedure
and can also be used as a temporary reg-
ister within a procedure. The system
stack pointer sp is not used by the BCPL
compiler, so it can be used to push and
pop temporary variables. The compiler

01 �GET "libhdr"

02 �

03 �LET start() = VALOF

04 �{

05 � FOR i = 1 TO 5 DO

06 � writef("fact(%n) = %i4*n", i, fact(i))

07 � RESULTIS 0

08 �}

09 �

10 �AND fact(n) = n=0 ‑> 1, n*fact(n‑1)

Listing 1: 1! to 5! in BCPL

75LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

BCPL MAKERSPACEMAKERSPACE

push {rg, rp, lr}

pop {rg, rp, lr}

The code produced by the code genera-
tor for the factorial example is shown in
Listing 2 with comments to explain spe-
cific instructions. Note that register r0 is
reloaded at location 0x38 because it is
reached by code from locations 0x34 and
0x74; consequently, the content of regis-
ter r0 is not assured. Additionally, the
reference to the string

"fact(%n) = %i4*n"

is not known at location 0x4C when the
instruction is generated; therefore, a full
static reference is generated with the off-
set 0x00000028 stored at location 0x90.

uses the BCPL stack for procedure link-
age and the storage of local variables. It
should be noted that the ARM core is a
pipelined processor and reference to pc
during an instruction implies the address
of the current instruction+8 for most in-
structions. The program counter pc is
used in the code generation of relative
addresses used for procedure calls and
branches and also in switchon expres-
sions in BCPL.

Although Linux libraries are not ex-
plicitly linked, the libc library is avail-
able to BCPL programs. Fortunately, the
register calling mechanisms of the GNU
gcc tool chain and BCPL are distinct and
independent. The BCPL stack grows up-
ward, with no access or modification to
the system stack. In C, the stack grows
downward, and local variables are stored
relative to the system stack pointer sp.
Consequently, it is possible to call C
functions from BCPL.

In the ARM Procedure Call Standard
(APCS), the first four arguments are
loaded into registers r0, r1, r2, and r3,
respectively, and a result is returned in
register r0. The address of the procedure
is computed, and the procedure is called
by an appropriate branch and link (bl)
instruction or a branch, link, and ex-
change instruction (blx).

However, C and BCPL have two im-
portant differences: (1) BCPL strings
are defined by the string size in the first
byte followed by the 8-bit characters of
the string, whereas strings in C are ar-
rays of 8-bit characters terminated with
a zero byte. BCPL strings must be

converted to C strings, if calling C.
(2) Addresses of variables, vectors, and
strings in BCPL are word addresses,
whereas they are machine addresses in
C. Passing an address from BCPL to C
requires a logical left shift of two
places, and passing an address from C
to BCPL requires a logical right shift of
two places. Care is needed with strings
in C because they are not necessary
aligned on 32-bit word boundaries.

In both C and BCPL, the registers r0-r9
are not preserved across procedure calls.
Additionally, the BCPL registers rp, rg, and
lr cannot be guaranteed to be preserved in
C, and it is advisable to store these regis-
ters before calling a C procedure. In prac-
tice, they can be pushed onto the system
stack and popped on return by:

Register Name Function
0 r0 Data register 0

1 r1 Data register 1

2 r2 Data register 2

3 r3 Data register 3

4 r4 Data register 4

5 r5 Data register 5

6 r6 Data register 6

7 r7 Data register 7

8 r8 Data register 8

9 r9 Data register 9

10 rg Global vector

11 rp BCPL stack

12 ip Unused

13 lr Link register

14 sp System stack pointer

15 pc Program counter

Table 1: BCPL Registers

 0: 0000003c data Section size (words)
 4: 0000fddf data Section identifier
 8: 6361660b data Section name “fact”
 c: 20202074 data
 10: 20202020 data
 14: 0000dfdf data Entry identifier
 18: 6174730b data Procedure name “start”
 1c: 20207472 data
 20: 20202020 data
 24: e8a4c800 stmia r4!,{fp,lr,pc} Standard procedure entry
 28: e884000f stm r4,{r0,r1,r2,r3}
 2c: e244b00c sub fp,r4,#12
 30: e3a00001 mov r0,#1 Initial value i
 34: e58b000c str r0,[fp,#12] Save i
 38: e59b000c ldr r0,[fp,#12] Load i
 3c: e28b4024 add r4,fp,#36 Set new stack frame
 40: eb000017 bl 0xa4 Call f(i)
 44: e1a02000 mov r2,r0 Arg 3 = f(i)
 48: e59b100c ldr r1,[fp,#12] Arg 2 = i
 4c: e59fe03c ldr lr,[pc,#60] Arg 1 = “fact(%n) = %i4*n”
 50: e08f000e add r0,pc,lr pc offset
 54: e1a00120 lsr r0,r0,#2 BCPL address
 58: e28b4010 add r4,fp,#16 Set new stack frame
 5c: e59ae178 ldr lr,[sl,#376] Global writef
 60: e12fff3e blx lr Call writef()
 64: e59b000c ldr r0,[fp,#12] Load i
 68: e2800001 add r0,r0,#1 Increment by 1
 6c: e58b000c str r0,[fp,#12] Store i
 70: e3500005 cmp r0,#5 Check end of for-loop
 74: daffffef ble 0x38 Continue for-loop
 78: e3a00000 mov r0,#0 Return 0
 7c: e89b8800 ldm fp,{fp,pc} Standard procedure return
 80: 6361660f data String “fact(%n) = %i4*n”
 84: 6e252874 data
 88: 203d2029 data

 8c: 0a346925 data

Listing 2: Code Generator Output

76 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

BCPLMAKERSPACE

Installation
The file bcpl_distribution [4] contains
the files shown in Table 2. The object
files bcpl.o and blib.o each contain a
block of position-independent code. The
assembler module leader.s provides a
means of identifying the start of a BCPL
program. The runtime library alib.s is
written in assembler code and includes
data regions for the global variables and
static variables and is linked to the GNU
C runtime library libc. Note that the files
bcpl.b and bcplfecg.h are only needed to
rebuild the compiler and are not re-
quired for user applications.

The distribution also includes several
BCPL examples and a user guide (Table 3).
The programs queens.b and primes.b are
described in Martin Richard’s excellent
notes to young people interested in pro-
gramming the Raspberry Pi [3].

To install BCPL on Raspberry Pi
Model 3 or 4, create a new directory
and copy the distribution files in
bcpl‑distribution to this directory. Al-
ternatively, to install BCPL on a Rasp-
berry Pi Model 2, copy the distribution

 90: 00000028 data

 94: 0000dfdf data Entry identifier
 98: 6361660b data String “fact”
 9c: 20202074 data

 a0: 20202020 data

 a4: e8a4c800 stmia r4!,{fp,lr,pc} Standard procedure entry
 a8: e884000f stm r4,{r0,r1,r2,r3}

 ac: e244b00c sub fp,r4,#12

 b0: e3500000 cmp r0,#0 Test n=0
 b4: 1a000001 bne 0xc0 Skip if not
 b8: e3a00001 mov r0,#1 Return 1
 bc: e89b8800 ldm fp,{fp,pc} Standard procedure return
 c0: e59b000c ldr r0,[fp,#12] Load n
 c4: e2400001 sub r0,r0,#1 Decrement n
 c8: e28b4010 add r4,fp,#16 Set new stack frame
 cc: ebfffff4 bl 0xa4 Call f(n-1)
 d0: e59b100c ldr r1,[fp,#12] Get n
 d4: e0000190 mul r0,r0,r1 Return n*(n-1)
 d8: e89b8800 ldm fp,{fp,pc} Standard procedure return
 dc: 00000000 data No statics
 e0: 00000000 data Start of global vector
 e4: 00000001 data Global 1 (start)
 e8: 00000024 data Offset to global 1
 ec: 0000005e data Maximum global of the section

Listing 2: Code Generator Output (continued)

BCPL MAKERSPACE

The logic simulator HILO-2 (the fore-
runner of Verilog) was developed in
BCPL. Numerous utilities, including
the early word processor roff were
written in BCPL. Before the availability
of floating-point hardware, I adapted
BCPL compilers for the Motorola 6809
and 68000 processors to use scaled
fixed-point arithmetic in real-time
flight simulation. nnn

files in bcpl‑distribution‑rpi2. In a ter-
minal shell, enter the commands

>unzip bcpl‑distribution.zip

>as leader.s ‑o leader.o

>as alib.s ‑o alib.o

>gcc leader.o bcpl.o blib.o alib.o ‑o bcpl

to build and test the compiler (> denotes
the Linux prompt).

For a first compiler test, compile and
run the program fact.b, which prints the
factorial numbers from 1! to 5!:

>./bcpl fact.b ‑o fact

>./fact

Further confidence tests rebuild the
BCPL compiler bcpl.b with the BCPL
compiler and build the library blib.b:

>./bcpl bcpl.b ‑o bcpl

>./bcpl ‑c blib.b

The BCPL library files and the compiler
can then be copied to the appropriate
Linux shared directories:

>sudo mkdir /usr/include/BCPL

>sudo cp libhdr.h /usr/include/BCPL/

>sudo cp bcpl /usr/bin/

>sudo cp leader.o /usr/lib/

>sudo cp blib.o /usr/lib/

>sudo cp alib.o /usr/lib/

The remaining BCPL programs can now
be compiled and run with the command
bcpl rather than ./bcpl. The compiler
searches for library files in the working
directory before searching the directories
/usr/include/BCPL and /usr/lib.

Nostalgia
The influence of BCPL on the develop-
ment of C and its later variants cannot
be overstated. The availability of
BCPL for the Raspberry Pi allows old
computer science students to dust off
copies of their programs, which
should run directly on the Raspberry
Pi. BCPL was used extensively in
many UK university computer science
departments. The portable multi-task-
ing operating system Tripos was writ-
ten entirely in BCPL in the Computer
Laboratory at the University of Cam-
bridge and used in early versions of
the Commodore Amiga, in the auto-
motive industry, and in financial
applications.

Dave Allerton obtained a PhD from the
University of Cambridge in 1977 and
worked in the defense industry before
spending 10 years at the University of
Southampton as a lecturer in computing.
He was the Professor of Avionics at Cran-
field University before moving to the Uni-
versity of Sheffield as Professor of Com-
puter Systems Engineering, where he is
currently an Emeritus Professor. He is also
a Visiting Professor at Cranfield University
and at Queen Mary University of London.
His research activities include flight simu-
lation, computer graphics and real-time
computing. He is author of two textbooks,
Principles of Flight Simulation (Wiley,
2009, ISBN 978-0-470-75436-8) and Flight
Simulation Software: Design, Develop‑
ment and Testing (Wiley, 2022, ISBN 978-
1-11973-767-4).

Author

[1]	� Richards, Martin. BCPL: The Language
and its Compiler, revised ed. Cam-
bridge Univ Press, 2009:
https://​www.​amazon.​com/​BCPL‑​
Language‑​Compiler‑​Martin‑​Richards/​
dp/​0521286816/​ref=sr_1_1

[2]	� Martin Richards:
https://​www.​cl.​cam.​ac.​uk/​~mr10/

[3]	� Richards, M., Young Persons Guide to
BCPL Programming on the Raspberry
Pi Part 1. Cambridge (UK): Computer
Laboratory, University of Cambridge,
revised 23 Oct 2018:
https://​www.​cl.​cam.​ac.​uk/​~mr10/​
bcpl4raspi.​pdf

[4]	� Code for this article:
https://​linuxnewmedia.​thegood.​cloud/​
s/​9nFQcFb2p8oRMEJ

Info

File Content
bench.b A small program to time the execution of a small fragment of BCPL
fact.b A small program to print the factorial numbers from 1! to 5!
primes.b A small program to print the prime numbers less than 1,000
queens.b An implementation of the “Queens” problem for 1 to 16 pieces
guide.pdf A guide to BCPL for the Raspberry Pi, including installation notes

Table 3: BCPL Examples and User Guide

File Name Function
alib.s A runtime library written in GNU ARM assembler
blib.b The BCPL runtime library, written in BCPL
blib.o A precompiled version of the BCPL runtime library blib.b
bcpl.b The BCPL compiler and code generator to run under Linux
bcpl.o A precompiled version of the BCPL compiler and code generator
bcplcg.b The code generator used by the BCPL compiler for the ARM processor
bcplfecg.h A header file used by the code generator
leader.s A small assembler program only used to locate the start of a BCPL program
libhdr.h The standard BCPL header

Table 2: bcpl_distribution

nnn

78 JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

BCPLMAKERSPACE

https://www.amazon.com/BCPL-Language-Compiler-Martin-Richards/dp/0521286816/ref=sr_1_1
https://www.amazon.com/BCPL-Language-Compiler-Martin-Richards/dp/0521286816/ref=sr_1_1
https://www.amazon.com/BCPL-Language-Compiler-Martin-Richards/dp/0521286816/ref=sr_1_1
https://www.cl.cam.ac.uk/~mr10/
https://www.cl.cam.ac.uk/~mr10/bcpl4raspi.pdf
https://www.cl.cam.ac.uk/~mr10/bcpl4raspi.pdf
https://linuxnewmedia.thegood.cloud/s/9nFQcFb2p8oRMEJ
https://linuxnewmedia.thegood.cloud/s/9nFQcFb2p8oRMEJ

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 79

LINUX VOICEINTRODUCTION

Phones? Computers? Calendars? Music devices? Wasn’t
everything supposed to converge? At least that was the
dream 10 years ago. Fast forward to today, and a lot of
modern utilities are ending up as apps on your
cellphone, but computers are still on the outside looking
in. Or are they? This month we take a look at Waydroid, a
tool that lets you run Android apps on your Linux system.
If you have Android apps that are working well for you, why
not keep them handy on your Linux
desktop? Also in this month’s issue,
we show you how to contend with
files compressed in the not-free
RAR format. Doghouse – What Is Fun?	 80

Jon “maddog” Hall
This month maddog writes about what
makes free software fun for him.

Compressing Files with RAR	 81
Ali Imran Nagori
The non-free RAR compression tool offers
some benefits you won’t find with ZIP and TAR.

FOSSPicks	 84
Graham Morrison
This month Graham looks at osci-render,
Spacedrive, internetarchive, LibrePCB 1.0.0,
and more!

Tutorial – Waydroid	 90
Harald Jele
Waydroid brings Android apps to the Linux
desktop in a simple and effective way.

Im
ag

e ©
 O

lex
an

dr
 M

or
oz

, 1
23

RF
.co

m

W riting software has always been fun for me. It is like a
puzzle, something to be solved with logic, following
certain rules. Very little of my work in programming

was writing new software. Most of my work in programming
was to take things that other people had written and make them
run faster or make them simpler to use.

Later in my career I did less programming (yes, I still do a little
programming today for my own use) and did more in guiding
others to do useful things.

Now, in the twilight of my career, retired from “professional
programming” but still volunteering on various projects, I hope
to continue guiding others, particularly younger people. And for
this I advocate free software and community cooperation.

My entire family (other than my mother and father) worked
for the telephone company AT&T at one time or another. My
fraternal grandmother, her daughter (my aunt), my uncle (my
aunt’s husband), my brother, and sister-in-law all worked for
various branches of AT&T. My co-op jobs through Drexel Uni-
versity (née Drexel Institute of Technology) were with the
Western Electric Company (the manufacturing arm of the
Bell System).

I first learned programming by taking a correspondence
course in “How to Program the IBM 1130 in FORTRAN” through
their educational program. After graduating from Drexel and
following a couple of career changes, I worked for Bell Labora-
tories, which is where I learned Unix as a Unix systems admin-
istrator. I am telling you all of this because I had a very deep
knowledge of telephone switching systems, including what is
known as a private branch exchange (PBX) that was an elec-
tronic switchboard used by companies, hotels, restaurants,
government installations, and many other uses.

These PBX systems would usually start at $20,000 to
$30,000 and go up from there. Therefore when I saw a book
that was entitled Asterisk: A Free and Open Source PBX, I in-
stantly knew what it was and what it meant.

I traveled to a users’ meeting of Asterisk called AstriCon and
met the founder and architect of Asterisk. He told me that he
had been considering making Asterisk proprietary and closed
source, but after listening to one of my talks he decided to make
it FOSS, and that had made all the difference.

It was about a decade ago when I was at CeBIT, at that
time the world’s largest computer show in Hanover, Ger-
many, that I was approached by three people individually
who told me that listening to me talk had guided them in
their careers. One was the head of their programming team,
another was the CTO of their company, and one had started
a company based on free and open source software. All
three of them pointed to a talk that I had given and how they
started down the FOSS path.

As I go around the world, I meet more and more people who
tell me that I had a great influence on their career and their lives
by telling them about free software, or open hardware, or free
culture.

I met a man in Brazil who told me that when he was 16 years
old he had nothing. No college education, no skills. But he went
to the library and started teaching himself how to be a Linux
systems administrator. He practiced on cast-off computers that
other people considered junk and eventually got a job doing
that. He kept studying, eventually getting a university degree in
computer science, and today is a professor teaching other
students.

Another Brazilian was working in a bank at the age of 18 and
living in a favela. The bank was throwing out some computers
and he asked if he could take them home. He reconfigured
them, installed Linux, and trained himself in system and net-
work administration. There was very little Internet in the favela,
so he decided to start a company installing and selling WiFi
there. People laughed at him and told him that no one in the
favela would ever pay him for that. Eventually he employed six
people full time in his WiFi company.

All of the people I have met and who have benefited from free
software are what makes computer science fun for me. It is not
the technology itself, although I still like learning about the tech-
nologies, but the people and seeing them improve their lives
and pass on their knowledge and experiences to the next gener-
ation of young people.

I loved the early days of Linux, where the “crazies” met in
groups to share their knowledge with other “crazies” who rev-
eled in sharing ideas on things such as Tux (the Linux mascot).

I want that fun to continue. nnn

MADDOG’S
DOGHOUSE
This month I want to write about what makes free
software fun for me. BY JON “MADDOG” HALL

Jon “maddog” Hall is an author,
educator, computer scientist, and free
software pioneer who has been a
passionate advocate for Linux since
1994 when he first met Linus Torvalds
and facilitated the port of Linux to a
64-bit system. He serves as president
of Linux International®. Not just the tech

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM80

LINUX VOICE DOGHOUSE – WHAT IS FUN?

on Ubuntu and Debian-based distributions, you
can use the following command:

$ sudo apt install rar unrar

The sudo command is crucial to ensure that you
have the necessary privileges to carry out the instal-
lation task. Once UnRAR is set up, the unrar com-
mand is all set to extract compressed files. But with
RAR, things aren’t that smooth, because it’s a propri-
etary program. That means you only get the trial
time of 40 days. You’ll then need to register to keep
using it. But that’s plenty of time to give it a spin.

Creating Simple RAR Archives
With RAR installed, it’s time to create your first
RAR archive. The rar command uses the follow-
ing syntax to create archives from files:

$ rar <option> <name_of_archive> <file_1 file_2U

 ...file_N>

Let’s get a grasp of the meaning of this peculiar
syntax. option defines the commands and
switches for each of the various file operations.
name_of_archive is the name of the file that RAR will
produce as output, and the sequence file_1
file_2.file_N is a list of the files that will be com-
pressed. There are lots of options you can use with
the rar command [2]. You can take a look at these
options by simply running RAR alone (Listing 1).

A rchiving files is like preserving your digital
legacy in a time capsule. It gives you a
safety net against unexpected computer

crashes or data loss, ensuring you can always re-
cover important files. That’s why file compression
tools are essential in the realm of Unix-based
operating systems such as Linux.

As a Linux user, you’re probably familiar with file
compression formats such as ZIP and TAR. How-
ever, you might also come across RAR files from
time to time. Unlike ZIP and TAR, RAR is commer-
cial software [1]. You can use RAR for free for up to
40 days; then you’ll need to buy a license, which cur-
rently costs around $29. You might be wondering
why a Linux user would pay money for a non-free
compression tool when ZIP and TAR are available
for free. The answer is that RAR offers some bene-
fits when compared to the alternatives, including:

• �Higher compression ratio: RAR often provides
better compression ratios, resulting in smaller
file sizes.

• �Password protection: RAR allows for strong
password protection, ensuring your sensitive
data remains secure.

• �File splitting: RAR’s ability to split archives
into smaller parts is handy for sharing or stor-
ing large files.

But even if you don’t choose to make RAR your
go-to compression utility, you might receive a RAR
file from someone else sometime and need to
know what to do with it. This article describes the
process of working with RAR files in Linux, from
installation to extraction and more.

Getting Started with RAR
Linux does not come with RAR support out of the
box. To get started with RAR files, you’ll need to in-
stall the RAR and UnRAR command-line utilities.
Furthermore, if you want to make sure you’re get-
ting the latest upgrades and maintaining compati-
bility with proprietary RAR archives, it’s best to
stick with the official RAR and UnRAR applica-
tions. To install these applications, you can use
your distribution’s package manager. For example,

The non-free RAR compression tool offers some benefits you
won’t find with ZIP and TAR. BY ALI IMRAN NAGORI

From bytes to bits

Hear Me RAR

01 �$ rar

02 � Type 'rar ‑?' for help

03 �Usage: rar ‑ ‑

04 � <@listfiles...> <path_to_extract\>

05 � a Add files to archive

06 � c Add archive comment

07 � ch Change archive parameters

08 � cw Write archive comment to file

09 � d Delete files from archive

10 � e Extract files without archived paths

11 �...

Listing 1: RAR options

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 81

LINUX VOICECOMPRESSING FILES WITH RAR

All right, that’s enough of the technical jargon.
Let’s put RAR into action and see what it can actu-
ally do. Take some simple text files, say file1.txt,
server.logs, and users.csv, and simply use the rar
command with the subcommand a. Next, put the
name of the archive you want to create and the
files you want to include (Figure 1). For example:

$ rar a backup.rar file1.txt server.logs users.csv

This will create a neat RAR archive named backup.
rar containing file1.txt, server.logs, and users.
csv. Interestingly, the ‑r recursive option lets you
add directories whether they include files or not
(Figure 2):

$ rar a ‑r my_secure_archive.rar BBB/ AAA/ sampleU

 .txt

What ends up happening is that everything below
the directory gets compressed as well. That’s a
pretty good thing you might need.

Password-Protected RAR Archives
Security will always be important. That’s why
RAR allows you to protect your archives with
passwords. To create a password-protected
RAR archive, use the ‑p option followed by your
desired password:

$ rar a ‑r my_secure_archive.rar BBB/ AAA/ sampleU

 .txt ‑p<my_password>

Just replace the placeholder <my_password> with
your password as shown in Figure 3. Or you can
leave it blank to let the terminal prompt you to
enter the password. That’s all. Your archive, my_
secure_archive.rar, is now password protected.

Creating a Split Archive
Got a big file to send? Don’t worry. RAR will fix your
file for easier sharing and storage. You can split a
large archive into smaller parts using the ‑v option
followed by the desired size and unit (e.g., k for ki-
lobytes, m for megabytes) [3]:

$ rar a ‑v50m my_split_archive.rar <some_largeU

 _file>

Executing this command will result in the creation
of several RAR files (Figure 4), each nearly packed
with a maximum size of 50 megabytes.

Let’s Go Extracting
Let’s now do some extraction jobs. Extracting
RAR files is pretty much the same as creating
one. However, there is no vendor lock on the
programs that extract the RAR files. You can
choose from multiple options such as WinZip,
WinRAR, 7-Zip, etc. For the time being, let’s go
with the traditional UnRAR program.

First things first, you can extract the archive
to the same directory it is located in. This will
not keep the original directory layout intact
(Figure 5). The directory structure will be lost,
and all items will be put into the single direc-
tory you’re in. To accomplish this task, you

Figure 1: Compressing multiple files with RAR

Figure 2: Multiple-file and directory compression using RAR.

Figure 3: Creating a password-protected RAR archive.

Figure 4: Creating a split archive with RAR.

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM82

COMPRESSING FILES WITH RARLINUX VOICE

• �You can use WinRAR with any language
version.

• �One key grants you the liberty to activate
RAR on multiple devices, provided it’s for
noncommercial use.

• �You get professional support right from the
support staff.

Conclusion
While free options are available, RAR’s ease of use
and feature set make it a solid choice if you’re will-
ing to invest in a license. In conclusion, working
with RAR files in Linux is straightforward once you
have the RAR and UnRAR utilities installed.
Whether you’re creating simple archives, adding
password protection, or splitting files, RAR offers
a range of features that can be valuable for man-
aging your data. Just keep in mind the proprietary
licensing when considering its use. nnn

need to use the e subcommand with rar. Here's
how it’s used:

$ unrar e my_secure_archive.rar

Besides copying the files, it extracts subdirecto-
ries without actually recreating them. Sometimes,
it might hurt you if you can’t get the original layout.
But no worries, there is a way out to keep the full
directory path (Figure 6). Just hit up the option x. It
will do the trick for you:

$ unrar x my_secure_archive.rar

Pretty cool, right? These files get extracted right
into your current directory, maintaining their origi-
nal tree structure intact.

What about unpacking an archive to a preset
directory? For this, option ‑o is at your disposal:

$ unrar e my_secure_archive.rar ‑o <some_U

 directory_path>

Extracting Password-Protected RAR Archives
If a RAR file is locked down with a password, you
have to make sure to drop that fancy password
when you’re opening it. The ‑p option comes in
handy here. See Figure 7:

$ unrar e my_secure_archive.rar ‑p<password>

A password ensures that potential intruders can’t
touch your files.

Licensing Model of RAR
RAR and WinRAR are commercial software, but
they are also shareware or trialware. This
means that you can use them for free for a trial
period, typically 40 days. After the trial period
ends, you must purchase a license to continue
using the software [4]. RAR and WinRAR li-
censes are perpetual, meaning that they are
valid for the lifetime of the software. When it
comes to a license, you get some serious free-
dom. You’re simply the boss here.

You can use your license on any computer that you
own or control. However, you cannot transfer your li-
cense to another person without their permission.
There are two types of RAR and WinRAR licenses:

• �Single-user licenses: You purchase one li-
cense to use RAR archiver on one computer.

• �Multi-use licenses: This license requires busi-
ness users to get one license per computer. In
a network (server/​client) environment you
must purchase a license copy for each sepa-
rate client (workstation) on which RAR or Win-
RAR is installed, used, or accessed.

A RAR license lets you enjoy many perks. Here
are a few of them:

Figure 5: Extracting an RAR archive without layout preservation.

Figure 6: RAR extraction with original layout.

Figure 7: Extracting a password-protected archive.

Ali Imran Nagori is a technical writer and
Linux enthusiast who loves to write about
Linux system administration and related
technologies. He blogs at tecofers.​com. You
can connect with him on LinkedIn.

The Author

[1]	� RAR for Linux and
Mac: https://​www.​
win‑rar.​com/​rar‑​linux‑​
mac.​html?&​L=0

[2]	� RAR manpage:
https://​manpages.​
ubuntu.​com/​
manpages/​en/​
man1/​rar.​1.​html

[3]	� Multi-volume RAR ar-
chive: https://​www.​
win‑rar.​com/​split‑​files‑​
archive.​html?&​L=0

[4]	� RAR license: https://​
www.​win‑rar.​com/​
winrarlicense.​html?&​L=

Info

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 83

COMPRESSING FILES WITH RAR LINUX VOICE

https://www.win-rar.com/rar-linux-mac.html?&L=0
https://www.win-rar.com/rar-linux-mac.html?&L=0
https://www.win-rar.com/rar-linux-mac.html?&L=0
https://manpages.ubuntu.com/manpages/en/man1/rar.1.html
https://manpages.ubuntu.com/manpages/en/man1/rar.1.html
https://manpages.ubuntu.com/manpages/en/man1/rar.1.html
https://manpages.ubuntu.com/manpages/en/man1/rar.1.html
https://www.win-rar.com/split-files-archive.html?&L=0
https://www.win-rar.com/split-files-archive.html?&L=0
https://www.win-rar.com/split-files-archive.html?&L=0
https://www.win-rar.com/winrarlicense.html?&L=
https://www.win-rar.com/winrarlicense.html?&L=
https://www.win-rar.com/winrarlicense.html?&L=

 FOSSPicks Sparkling gems and new
releases from the world of
Free and Open Source Software

A word of caution for some of these finds. Graham managed to break
his speakers and invoke tinnitus after playing with osci-render too long
for this issue. BY GRAHAM MORRISON

D espite a hardware user in-
terface festooned with
knobs and buttons, oscil-

loscopes perform a rather mun-
dane function: They trace changes
in input voltage over time. One
input translates changes into
movement along one axis while a
second input translates changes
onto the other axis. When the two
input voltages are combined, the
trace can move anywhere within
the X and Y area of the screen.
They’re intended to visualize wave
cycles within circuits, such as the

voltages measured from a crystal
oscillator or a microprocessor, and
these could look like sine waves, or
square pulses. Because they’re
also electrical signals, an audio
signal through a wire is no differ-
ent, and oscilloscopes are often
used to visualize stereo audio sig-
nals. The output won’t look good
on screen, but you can see from
this kind of trace whether the two
inputs are in phase or compatible
with mono speaker equipment.

Remarkably, there’s a sub-genre
of electronic music that generates

an audio signal that both
sounds interesting (musical
may be a stretch too far) and
looks amazing on an oscillo-
scope screen. The process
starts with a series of com-
plex transformations from X
and Y coordinates into audio
voltages that render as a pat-
tern or image on the trace.
Creating those transforma-
tions has always been diffi-
cult and has spawned com-
mercial software for those
interested in exploring the
transformations further. And
there hasn’t been an open
source option until now.
Osci-render is a graphical ap-
plication that can be used to
transform a 3D model, text,
an SVG file, or even a Lua
script into a stereo audio sig-
nal that will regenerate the
image on an oscilloscope. If
you’re into experimental
electronic music, it can also
sound amazing.

It sounds complicated,
but it’s easy to get started
because the default project
loads a 3D cube model by
default. Connect your audio
output to an oscilloscope, or
use the web browser oscillo-
scope that can be loaded
from the main application,
and you can see this cube
immediately. There are con-
trols for rotating, zooming,
and transforming the object,
and these affect the sound
that subsequently builds the
image. The timbre of the
audio depends on the com-
plexity of the object, with
simple objects more likely to

create pleasing sine wave-
like sounds and more com-
plex objects generating lots
of competing harmonics. A
single triangle is an excellent
source, for example, but you
need to add object move-
ment to animate the sound
and the image.

There are several 3D ef-
fects too, including wobble
and bitcrushing, which break
apart the model into a series
of lines and sound artifacts.
Many of these can be auto-
mated with MIDI signals, al-
lowing you to generate both
sound and video as a kind of
electronic music perfor-
mance. With careful plan-
ning, the results can be both
visually and audibly stunning,
and you can record the raw
audio output directly from
the application. If this isn’t
enough, the project includes
an add-on for Blender which
links the main camera view
to a running instance of osci-
render, transforming what-
ever the Blender camera
sees into audio for an oscillo-
scope. This means you can
set up and script a far more
complex animation within
Blender using its keyframe
and staging tools, and run
the output directly into an
oscilloscope. It may be
niche, but it’s a lot of fun,
and if you’re careful, it can
sound and look absolutely
amazing.

Oscilloscope music

osci-render

1. Input: Load an OBJ 3D model, enter text, or generate images with Lua. 2. Preview:
If you don’t have an oscilloscope, you can use your web browser to preview the resul-
tant animation. 3. Audio effects: In changing the sound, these effects transform the
visuals in fascinating ways. 4. Output: Record the audio directly, or output the audio
to your speakers and oscilloscope. 5. Controls: There are many controls for rotating,
reflecting, scaling, and animating your input. 6. MIDI control: Osci-render can be used
for live performance with MIDI used to control the values remotely. 7. Frequency:
The overall pitch of the audio can be changed to fit your music. 8. Animation: Values
can modulate themselves to add their own variation in the output.

Project Website
https://​github.​com/​
jameshball/​osci‑render

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM84

LINUX VOICE FOSSPICKS

https://github.com/jameshball/osci-render
https://github.com/jameshball/osci-render

File manager

Spacedrive
W e’ve looked at many

different file managers
on the command line,

in a browser, and on the desktop.
To differentiate themselves, they
each took a unique approach to
some aspect of file management,
whether that was integrating net-
work access (Dolphin), pure desk-
top integration (Gnome Files), or
aping 1990’s DOS functionality
(Midnight Commander). Space-
drive’s USP is unity, unifying ac-
cess to all your files and directo-
ries, wherever they may be lo-
cated. It does this by implement-
ing its own Virtual Distributed File
System (VDFS) to provide a sin-
gle API to manipulate and access
various different back ends.
These back ends include local
storage, external storage, and
network locations, which are
combined into a single library.

After first creating a library –
or creating a new, separate li-
brary for a different abstraction
of the files you want to access –
the file management interface is
very similar to Dolphin’s on KDE,
especially with the dark color
scheme. You can switch be-
tween an icon grid view, a list
view, and a media playback view.
The latter shows a preview of
photos and movies. Also like Dol-
phin, you can tag files and direc-
tories with labels for easier re-
trieval. Internally, Spacedrive is
creating and maintaining its own
metadata database of every item
you add to each library so that
search and retrieval can be as
quick as possible, regardless of
where the items are stored. The
application is at an early stage of
development and considers itself
to be “alpha” quality. But even in

this state it’s attracted substantial venture capital for fur-
ther development. This is reminiscent of the ancient days
of Helix Code, Eazel, Nautilus, and the Gnome desktop,
but Spacedrive’s investment will hopefully result in a self-
sufficient project. You can see the beginnings of this in an
optional account login. But the project is genuinely open
source, and offers a unique new take on how to manage
files in an increasingly disparate world of personal data.

Project Website
https://​www.​spacedrive.​com/

Command-line access

internetarchive

R ather than being an ar-
chive used mostly for his-
torical study, the Internet

Archive has become the backbone
of the contemporary Internet. It
often offers unfettered access to
otherwise restricted, geo-locked,
or paywalled content and is com-
mitted to maintaining the unedited
ramblings of all-too-spontaneous
social media interactions. These
are now fundamental to our free-
doms online, and it’s often the
snapshots held by the Internet Ar-
chive that keep people account-
able, while also providing a snap-
shot of online life in what will be-
come a great transition for hu-
mankind. The Internet Archive it-
self is a non-profit organization
committed to making all of this
available for free, forever. And it’s
always storing the web, with over

808 billion pages archived so far in
2023 alone, all accessible through
your humble web browser.

But the web isn’t always the
best place for serious research,

study, or even to contribute anything more than a couple
of files. To help with this, the Internet Archive publishes
its own set of open source command-line tools, inter-
netarchive, installable either through Python’s pip or as a
directly executable binary. This binary interacts with the
Internet Archive’s own API, and you can use it to perform
almost any of the same tasks you can accomplish with a
keyboard, mouse, and web browser, only from the conve-
nience of your terminal. It’s especially good for automa-
tion because it can retrieve JSON-formatted metadata

for entries, and to allow the bulk edit-
ing and uploading of modified meta-
data. You can also download specific
items from the archives, such as files
linked to a page with a certain file type,
or even download an entire collection.
There’s also an option to generate
files, such as ePub books, “on the fly”
when they’re typically created when
someone clicks the option on the site.
It can save a lot of time, and help you
avoid the distractions of browsing
away from whatever you were study-
ing to look at a collection of classic
Amiga games.

Project Website
https://​github.​com/​jjjake/​internetarchive/

Spacedrive is open source and cross-platform, with macOS and
Windows builds alongside Linux and a promise for an Android client.

Interact with the Internet Archive from your command line with a
selection of open source tools published officially by the project.

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 85

FOSSPICKS LINUX VOICE

https://www.spacedrive.com/
https://github.com/jjjake/internetarchive/

Filesystem navigator

nav

A fter you’ve learned the
basics of the ls and cd
commands, navigating

the filesystem from a terminal is
straightforward. But it can also
be a little labor intensive as you
cd into a directory and ls to view
what’s in there before jumping
to another location or checking
the contents of other directories
to find what you’re looking for.
Tab completion, interactive his-
tory, and fuzzy search can all be
added and can help massively,
but they don’t change the core
experience. This is something
that nav attempts to do, by re-
placing ls and cd with an inter-
active filesystem navigator to
help you find whatever you’re
looking for.

As a single binary, nav can re-
place ls with an alias and takes

several of the same arguments.
After launching nav, you enter an
interactive terminal-based file
directory navigator. The arrow
keys can now be used to move
up and down the contents of the
local directory, with Enter to
open a directory or quit and re-
turn to the current location. Re-
turning to the current location
means outputting the path to
the standard output, which is in-
tended then to be piped into
whatever you need the path for.
This could be an editor or a
media player, for instance, or
any other command requiring a
path as an input. You can also
use the nav interface to select
multiple locations, or files,
which are then output as a list.
Within nav, you can search,
show hidden files, and choose

to follow symbolic links. There
are a few more shortcuts for re-
turning relative links and an in-
teractive help screen. By keep-
ing things simple nav feels like a
great upgrade over ls, especially
if you’re new to the command
line or can never remember
where you stored things.

Project Website
https://​github.​com/​dkaslovsky/​nav

Circuit designer

LibrePCB 1.0.0
L inux and open source excel

at nurturing software for
specialized interests. We’re

inundated by esoteric synthesiz-
ers, domain-specific programming
languages, and desktop applica-
tions for all kinds of diversions.
One particularly well-appointed di-
version is the design of printed cir-
cuit Boards (PCB), which we’ve
looked at in KiCad 7, QElectroTech,
Horizon EDA, and even the logic
simulator BOOLR. We can now
add to these LibrePCB, another ex-
cellent desktop PCB design tool
that is particularly committed to
being open source and easy to
use. Under development since
2013, LibrePCB is built with C++
and Qt. It’s quick, accessible, good
looking, and very capable.

There are two main views to
the application: a schematics

editor and a board editor. As with
similar applications, the schemat-
ics editor is for the circuit design,
while the board editor lets you
modify the layout of the circuit on
a board ready for pricing. The two
are kept synchronized and fea-
ture rule checking, multiple layers,
and an easy drag-and-drop inter-
face that can switch between var-
ious devices or footprints. There’s
graphical acceleration and a use-
ful 3D view for the circuit design.
The most important part, how-
ever, is the library for importing
symbols, footprints, and pre-de-
signed components. Library man-
agement is significantly cleaner in
LibrePCB than with other projects,
firstly by using the same file for-
mat across the entire application,
regardless of the type of library,
and also in the way it handles

dependencies and file
paths. If you install a library
with a dependency on an-
other library, that library and
its own dependencies will
also be installed. If you’ve
struggled through Arduino
platform libraries, as well
as where those libraries
might be installed, you’ll ap-
preciate how difficult this

can be. Combine this with
the library editor for adding
your own components, and
you have a fantastic pack-
age for all-in-one PCB de-
sign that even features its
own fabrication service for
painless PCB ordering.

Define a function such as cd "$(nav ‑‑pipe "$@")" to use nav
to navigate and switch to the selected directory.

One of the best things about LibrePCB is the fabulous documenta-
tion, which includes a brilliant on-boarding tutorial.

Project Website
https://​librepcb.​org

FOSSPICKSLINUX VOICE

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM86

https://github.com/dkaslovsky/nav
https://librepcb.org

File synchronization

Celeste
W hether it’s local, LAN,

or server-based, stor-
age is now cheaper

than ever. But we’re also gener-
ating more data than ever, and
the two seem to cancel each
other out. It’s tempting to stick
with the default media backup
services offered by Amazon,
Google, and Apple, but that
means putting your trust and
privacy in their hands. Unless
you’re a sys admin, there isn’t
an easy solution to manage
this locally. One of the best
tools for backup, for example, is
rclone. This is a command-line
tool that can synchronize one
location to another, with sup-
port for dozens of different
storage locations, from Ama-
zon to WebDAV, with local files,
the Internet Archive, SFTP, and

Nextcloud in between. But the
best thing about rclone is that
it’s been around long enough to
be trusted. If only it wasn’t a
command-line tool.

Celeste is the answer. It’s a
beautiful, minimal graphical ap-
plication that’s been developed
to synchronize a local location
to a remote location and back.
The GUI lists servers on the left
and files and directories on the
right, with a status icon for each
location to show which are
being updated. It handles the
complexity of excluding specific
files and dealing with conflicts
when something changes. It
can do this while connecting to
several cloud providers at the
same time. The cloud provider
list isn’t currently as compre-
hensive as rclone’s, but it still

includes Dropbox, Google Drive, Nextcloud, Proton
Drive, and WebDAV. This power and capability comes
from using rclone as the back end, which is a good
thing. It means that while Celeste itself remains under
heavy development and is still considered an alpha re-
lease, its file synchronization and backup can be
trusted, at least for collections you’re happy to clone to
more than one other location.

Project Website
https://​github.​com/​hwittenborn/​celeste

File encryption

Cryptomator

M aking sure your files
are backed up is one
thing. Making sure

they’re secure is quite another.
This is especially true when your
backups are stored in the cloud
because you’re trusting the cloud
provider to both not peek into
your files and also to have rigor-
ous access control. As a user,
both of these are impossible to
know for certain. That leaves the
best solution to be something
you can directly control, which
inevitably means encrypting
things yourself. Similar to
backup, there are many open
source encryption options, but
the best will be something sim-
ple and secure. Cryptomator is a
strong candidate for being the
best. It’s an easy-to-use tool with
commercial ambitions and a

codebase that’s been indepen-
dently audited.

Cryptomator is a cross-plat-
form desktop application that
will encrypt your data by first
creating a virtual vault and then
by letting you unlock the vault at
any time to add, remove, or see
files inside the vault. You’re
guided through every step of
this process, from creating the
vault to entering a passphrase.
You can create more than one
vault, and the vaults can be
stored locally or on any cloud
platform with local synchroniza-
tion support, including Dropbox,
Google, OneDrive, and Next-
cloud. Unless you choose to
trust your desktop’s password
manager, this passphrase will
need to be entered whenever
you access the vault. This puts

you in direct control over your data, unlike similar vault-
like systems in KDE Plasma or even macOS, where the
integration could become a security risk. That Crypto-
mator defaults to using whatever remote storage you
have access to is also a huge advantage, and this also
enables you to make the most of its cross-platform
compatibility, because you can access the same vaults
from multiple locations and operating systems.

Project Website
https://​cryptomator.​org

Celeste has been written in Rust and is proud of how fast it runs,
regardless of the desktop environment.

While Cryptomator is definitely open source, certain features such
as the dark mode can only be unlocked from within the official bina-
ries after you’ve made a financial contribution to the project.

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 87

https://github.com/hwittenborn/celeste
https://cryptomator.org

Music workstation

Ardour 8
I t’s fantastic being able to

write about a major Ardour
release every year. It’s a sign

that the project is flourishing,
both with its modest financial
support and with the develop-
ment efforts that go into each re-
lease. When there’s so much dis-
cussion about how open source
projects can fund themselves,
Ardour is a great example of
what can be accomplished with
binary downloads behind a sub-
scription model while remaining
100-percent open source. The re-
lease of Ardour 8 also feels like
an inflection point in the project’s
own development trajectory be-
cause it’s the first major release
with a creative bias rather than a
productive one. This means
most of its new features are tar-
geted at the creative stage or
compositional stages of the mu-
sic-making process, rather than
the later production or mastering
stages. And even more impor-
tant, they target MIDI note data
rather than the audio data, which
has traditionally been Ardour’s
target.

A great example of Ardour’s
new creativity is being able to
use “lollipops” to edit the velocity
values for MIDI notes. Velocity

values for each note
have always been ed-
itable, but only by se-
lecting each note in-
dividually. Velocity is
now shown in its
own “lane” beneath
the notes, letting you
still edit individually
or drag the cursor
across to change
multiple values at
once. The lollipop
sticks will adjust themselves ac-
cordingly. You can also finally
draw automation curves free-
hand by dragging the mouse
across an automation lane,
rather than clicking through each
point individually. This makes
controlling things such as a filter
cutoff or modulation much more
intuitive while still retaining the
sample-accurate interpolated au-
tomation integrated into Ardour.
MIDI tracks now have note
names in the note matrix using
the MIDNAM standard. This is
particularly useful for drum
tracks when the labels are used
to show which notes trigger
which drum sounds, but they’re
also handy when you use scales
that differ from the standard
12-TET.

The best new creative
features, however, are
thanks to a third-party
contribution using Lua to
create three new arpeggia-
tors. An arpeggiator is a
classic note-generating
tool that will create varia-
tions of the notes you
input. Enter the C, E, and G
notes for a C-major chord,
for example, and an arpeg-
giator will trigger them in
rising, descending, or ran-
dom orders. Ardour’s ar-
peggiators can do this, but
they can also add rhyth-
mic accents to notes by
adjusting their velocity
when they synchronize
with the current time sig-
nature. However it’s the
random arpeggiator that is
the most fun to play with.
This offers control over
harmonic content and can
generate all kinds of inter-
esting output that you can
use to serendipitously in-
corporate into your own
music. If this isn’t enough,
Ardour now includes an al-
gorithmic composition ar-
peggiator called “Raptor.”
This includes note filters,
conditions for output
notes, limits, pitch track-
ing, and a totally unique
sound of its own.

The production stage
hasn’t been ignored either.

Ardour continues to be-
come easier to use and
more intuitive. You can
now select more than one
channel to create a “quick
group,” for instance, so that
any control you now move
will affect all selected
channels. This is very use-
ful for small changes, and
you can still create formal
track or bus groups to en-
sure many channels are
processed with the same
signal path. Similarly, you
can select more than one
region in a clip or recording
and group these together,
much like you might with
the elements of a diagram
in Inkscape. The project
tempo can now be ad-
justed dynamically too,
without the rigidity of a
fixed grid or click track.
This works by manually
dragging lines to the points
in a recording that you
know are timed to hit a
specific point. These
points will then align
across all of your tracks,
regardless of how well
timed their recordings
were. It’s a brilliant addition
to an application that con-
tinues to go from strength
to strength.

The clip view was the major new addition in the previous release, augmented in
Ardour 8 by support for Launchpad Pro hardware.

Ardour 8 is now one of the best digital audio and MIDI applications you can install
on any platform, at any cost.

Project Website
https://​ardour.​org

FOSSPICKSLINUX VOICE

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM88

https://ardour.org

T he Linux gaming land-
scape was very different
back in 2007. We were

still in the “optimistically hoping
for a miracle” phase, pleading
with AAA game publishers to
cross-port their titles to Linux. A
few of them had, most notably
Unreal Tournament 2004, but by
2007 many of our hopes lay with
Linux Game Publishing conver-
sions and CodeWeavers and
their Wine compatibility hacks.
Enter Frictional Games. An en-
tirely new games company
founded by people entirely new
to gaming. Their first games
were the Penumbra trilogy, with
each title released natively for
Linux alongside the macOS and
Windows versions. Frictional has
since become hugely successful
with their brand of first-person

survival horror games.
At the heart of their success is

the HPL (H. P. Lovecraft) 3D
games engine, which creates a
realistic and immersive physi-
cally modeled environment in
which to set the games. The
code for HPL Engine 1 was re-
leased as open source in 2010,
and Frictional generously did the
same for HPL Engine 2 in 2020.
This means that people can
study and re-implement those
engines to keep what are becom-
ing genuine classics running on
modern hardware. This is exactly
what the Amnesia: The Dark De-
scent Redux project has done.
It’s a rework of the original en-
gine to use Vulkan to play one of
Frictional’s best games, Amne-
sia: The Dark Descent. It tracks
the development of the original

with additions to provide modern features such as resiz-
ing the main window, better performance and occlusion
mapping, and a to-do list that includes replacing the en-
tire Newton Game Dynamics physics engine. You still
need the original assets, because these were never re-
leased, but it’s a great way to replay a genuine classic,
and hopefully, to play all of Frictional’s modern classics
for a long time to come.

Project Website
https://​github.​com/​OSS‑Cosmic/​AmnesiaTheDarkDescent

Strategy game

Zatikon
Z atikon promises to be

“chess evolved.” At first
glance, it certainly looks

the part. The game is played on a
11x11 checkerboard with pieces
that look like chess pieces.
These pieces are your army
units, and you take turns to move
them across the board in an at-
tempt to capture the opposing
enemy’s castle. Like chess, a unit
can only move in a certain way,
but unlike chess, you get to
choose which units you start the
game with. Units can be bought
with gold earned from previous
battles, and you buy your own
units to construct an army.
There are over 100 different
units, each with their own price
and capabilities. Those capabili-
ties include life, power, armor,

move, and range attributes,
alongside a special power for the
majority of units. Special powers
include being able to jump, heal,
summon imps, or deploy wolves,
and they deeply affect your
strategy.

You can play alone, against
someone online, or cooperatively,
and there’s a handy in-game tuto-
rial to help you get started. In
these ways, playing Zatikon is
like a combination of chess, turn-
based strategy, resource man-
agement, and deck building, and
it’s a lot of fun. What’s more re-
markable is that, until very re-
cently, the game was a commer-
cial enterprise published by
Chronic Logic. The open source
release only happened after an
ambitious player got in touch

with the developer and asked whether the game could be
made open source. It’s a question that hundreds of com-
mercial projects have been asked, but it’s one that
Chronic Logic enthusiastically got behind, working hard
on the code to enable an AGPL 3.0 release. This is now
available for you to build or install from the Flatpak. If
you’ve never played the game before, it’s a brilliant oppor-
tunity to play something battle tested by the most critical
of players – paying customers.

Project Website
https://​github.​com/​zatikon/​zatikon

If you already own Amnesia: The Dark Descent, a new implementa-
tion of its games engine helps the game run on modern hardware.

While the graphics may look austere, the combination of chess strat-
egy with Magic-style deck building in Zatikon feels very modern.

HPL games engine

Amnesia: The Dark
Descent Redux

FOSSPICKS LINUX VOICE

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 89

https://github.com/OSS-Cosmic/AmnesiaTheDarkDescent
https://github.com/zatikon/zatikon

In the first step, if not already present, you need
to install two Ubuntu packages needed later (List-
ing 1, line 1). Then add the project’s official reposi-
tory to the local software sources (line 2); this will
keep you up-to-date in the future. These sources
are used to install the current version of the appli-
cation (line 3) later.

With this step, the required program compo-
nents will now already exist in your Linux setup.
Finally, you need to tell Ubuntu’s system and ses-
sion manager (systemd) to automatically start
the Waydroid container at operating system boot
time (line 4).

First Launch
When booting, Waydroid explores its configura-
tion and determines prior to the initial launch
that an Android instance has not yet been added.
It then displays a graphical prompt, asking you
to choose one of the two available instances
(Figure 1).

You can choose either the Google-free VANILLA
version or GAPPS for seamless integration with the
Googleverse. If you change your mind later, type
init at the command line to instruct Waydroid to
load the other image and prepare it for mounting
and booting (Listing 1, line 5).

However, Waydroid can only run one Android
session inside a container so far. It makes sense
to rename the previously loaded image before
overwriting it by downloading the other one. The
images for a Waydroid session reside in the /var/
lib/waydroid/images/ directory and are named
system.img and vendor.img. You will want to re-
name these two files to keep them safe if you
make any changes.

Emulators can be used to run applications
from different operating systems in vari-
ous constellations on Linux. The best-

known candidates include Wine (Windows), DOS-
Box (DOS), and SNES (Nintendo games). But a
counterpart for Android has been a long time
coming, despite the clear proximity between the
two systems. The current Android kernel is de-
rived from a Linux kernel with long-term support
(LTS). Despite many patches, there are basically
more similarities between Android and Linux than
differences. Having said this, running Android
applications natively on Linux is complex and in-
volves some tricky detailed work [1].

The makers of the free Waydroid [2] set them-
selves the task of integrating Android apps into
the Linux universe as easily and flexibly as possi-
ble. When doing so, they relied on a proven ap-
proach and avoided reinventing the wheel. Anbox
took a very similar path as early as in 2017, but
the developers failed to follow up with a useful
product. Anbox development was eventually
discontinued in 2023.

Waydroid, like Anbox, is based on a container
solution inside of which a session manager
mounts and then launches an Android image.
There are currently two images available, one with
the central Google apps (GAPPS) and one without
them (VANILLA). Both are descendants of Linea-
geOS and are equivalent to an Android 11. They
can be updated on the fly by an integrated update
mechanism.

Installation
You can install the current Waydroid v1.4.1 on
Ubuntu 22.04 LTS with just a few steps. The proj-
ect website describe the details of the easy-to-fol-
low procedure [3].

Waydroid brings Android apps to the Linux desktop in a simple and effective way.

BY HARALD JELE

Run your Android apps on Linux

Swapping Places

01 �$ sudo apt install curl ca‑certificates ‑y

02 �$ curl https://repo.waydro.id | sudo bash

03 �$ sudo apt install waydroid wl‑clipboard ‑y

04 �$ sudo systemctl enable ‑‑now waydroid‑container

05 �$ sudo waydroid init ‑s SYSTEM_TYPE <Image>

Listing 1: Waydroid Setup

Figure 1: During the install, you need to select the Android
image you want to use.

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM90

LINUX VOICE TUTORIAL – WAYDROID

Using Applications
You are now ready to launch some initial Android
apps. These apps blend in with the native Linux
apps in the Ubuntu startup folder (Figure 2).

Once you have launched the GAPPS image, you
need to register it with Google (Google Play certifi-
cation) to fully enjoy Google Play. To do this, type
sudo waydroid shell to start a Waydroid shell. In
the shell, you then need to run the less than user-
friendly command from line 1 of Listing 2 to dis-
cover the device ID and register it with Google [4]
on https://​www.​google.​com/​android/​uncertified.

Registration usually takes only a few seconds
after you sign into your Google account. How-
ever, there are some posts on forums telling
you that the procedure can take up to a few
minutes. After completing the registration, you
need to restart the Waydroid session (Listing 2,
lines 3 and 4).

In the Android Universe
As mentioned before, the Ubuntu application
launcher shows you the icons of any Android
apps installed with the Google image alongside
those of the native installation. For an overview of
the apps that have been installed, you can run the
waydroid app list command at the command
line. You can also use the entries in this list to call
an Android application from the command line.
Lines 3 to 5 of Listing 3 show you an example of
this that references the entry for a Google Docs
app. You can launch the app directly in the termi-
nal with the command from line 7.

Your options for launching Android apps in-
clude Google Play and the Google settings (Set-
tings | Apps) like on a smartphone or tablet, calling
the apps with Waydroid via the Ubuntu applica-
tion launcher, or launching directly from a termi-
nal. There are specific deployment scenarios for
each of these options.

You can use Google Play to install additional apps
if needed. F-Droid can also be integrated as an addi-
tional source in the usual way. On top of this, Way-
droid provides an approach for setting up applica-
tions in APK file format directly (Listing 3, line 8).

Figure 2: Android apps min-
gling with native Linux apps
in the Ubuntu program
launcher.

01 �$ �ANDROID_RUNTIME_ROOT=/apex/com.android.runtime ANDROID_DATA=/data
ANDROID_TZDATA_ROOT=/apex/com.android.tzdata ANDROID_I18N_ROOT=/
apex/com.android.i18n sqlite3 /data/data/com.google.android.gsf/
databases/gservices.db "select * from main where name = \"android_
id\";"

02 �[...]

03 �$ waydroid session stop

04 �$ waydroid session start

Listing 2: Google Play Certification

01 �$ waydroid app list

02 �[...]

03 �Name: Docs

04 �packageName: com.google.android.apps.docs.editors.docs

05 �categories: android.intent.category.LAUNCHER

06 �[...]

07 �$ waydroid app launch com.google.android.apps.docs.editors.docs

08 �$ waydroid app install <App>.apk

Listing 3: Launching Apps

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 91

TUTORIAL – WAYDROID LINUX VOICE

annoying problems is that rotating the display
causes some applications to trip over their
toes. Not all apps are suitable for operation in
landscape mode. This is basically not a pecu-
liarity of Waydroid, because apps like this will
also fail if you run them natively on a cell phone
or tablet.

What is annoying is the fact that you cannot
reach half of the display with the mouse, in this
case because Android only uses the width of
the portrait format. In previous versions of Way-
droid, this area simply remained black. In the
current release, Waydroid does display the area,
but it still cannot be used. Figure 3 shows a
problematic application with the mouse pointer
(which is very small in the figure) on the ex-
treme right edge of the accessible area (within
the red circle in Figure 3).

Basically, an application like this could be
brought in line by rotating manually. However,
manually changing the display geometry would
then also affect all other apps. The simplest solu-
tion is to use the commands in Listing 4 to enable
multi-window operation of the display, where all
applications are displayed in portrait mode by de-
fault (Figure 4).

Currently, problems can still be caused by
camera operations, the speakers, and the mi-
crophone. Waydroid is very keen on transpar-
ently passing the Linux standards through to

Problems
When installing new apps, you are likely to no-
tice, sooner or later, that the Waydroid project
still has a few rough edges. One of the most

Figure 4: In multi-window mode, Waydroid displays all the Android apps in portrait mode.

Figure 3: An example of an application that cannot be used
in landscape mode.

$ �waydroid prop set persist.waydroid.multi_

windows true

$ systemctl restart waydroid‑container.service

Listing 4: Multi-Window Mode

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM92

TUTORIAL – WAYDROIDLINUX VOICE

the container. Nevertheless, it is still potluck as
to whether the system responds properly to the
hardware setup. The developers have been put-
ting a great deal of work into the camera ac-
cess for quite some time, so there should be
some noticeable progress soon.

Command Line
Waydroid can be fully controlled and configured
using the command line. But because the soft-
ware works without any problems in many areas,
many of these options remain more or less hid-
den. If you do want to take a closer look at the
services Waydroid offers to the outside world,
you will find detailed information about them in
the Waydroid documentation [5]. For a first im-
pression, you can try calling the Waydroid status
report (Listing 5).

If there isn’t an active session in the container,
you can change this with waydroid session start,
while waydroid session stop does what it says on
the label. If you start an Android app with no ac-
tive session, Waydroid automatically starts a
session with the app.

If there isn’t an active container, you can use

sudo waydroid container <option>

to change this. The options Waydroid accepts are
start, stop, restart, freeze, and unfreeze. For the
inquisitive or anyone wanting to troubleshoot an
issue, it is useful to take a look at the waydroid.log
file in /var/lib/waydroid/.

Conclusions
The very flexible, open source Waydroid offers a
useful approach to integrating Android applica-
tions into a Linux installation. Apps can be set up
and used in the same way as on a smartphone.
wl-clipboard [6] offers a neat way of exchanging
data between the native Linux apps and the An-
droid apps in the container.

Waydroid integrates well into the desktop of
an Ubuntu installation; running Android apps is
more or less the same as running native Linux
apps. The project will very likely enable untrou-
bled access to the camera, microphone, and
speakers in the near future. This means that
there is nothing stopping you from using your
favorite apps from your smartphone or tablet
on Linux. nnn

$ waydroid status

Session: RUNNING

Container: RUNNING

Vendor type: MAINLINE

IP address: 192168240112

Session user: admunix(1000)

Wayland display: wayland‑0

Listing 5: Waydroid Status

[1]	� Common Android kernel:
https://​source.​android.​com/​docs/​core/​
architecture/​kernel/​android‑common?​hl=en

[2]	� Waydroid: https://​waydro.​id

[3]	� Installing Waydroid:
https://​waydro.​id/​#​install

[4]	� Google Play certification.
https://​docs.​waydro.​id/​faq/​google‑play‑​
certification

[5]	� Waydroid command line:
https://​docs.​waydro.​id/​usage/​waydroid‑​
command‑line‑options

[6]	� wl-clipboard:
https://​github.​com/​bugaevc/​wl‑clipboard

Info

Harald Jele is a member of staff at the
University of Klagenfurt. He stumbled across
Linux by happy coincidence in 1993 and has
been using it on both servers and desktops
ever since.

The Author

nnn

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024 93

TUTORIAL – WAYDROID LINUX VOICE

https://source.android.com/docs/core/architecture/kernel/android-common?hl=en
https://source.android.com/docs/core/architecture/kernel/android-common?hl=en
https://waydro.id
https://waydro.id/#install
https://docs.waydro.id/faq/google-play-certification
https://docs.waydro.id/faq/google-play-certification
https://docs.waydro.id/usage/waydroid-command-line-options
https://docs.waydro.id/usage/waydroid-command-line-options
https://github.com/bugaevc/wl-clipboard

Linux Magazine is your guide to the world of Linux. Monthly issues are packed with advanced technical
articles and tutorials you won't find anywhere else. Explore our full catalog of back issues for specific
topics or to complete your collection.

#275/October 2023

Think like an Intruder

The worst case scenario is when the attackers know more than you do about your network. If you
want to stay safe, learn the ways of the enemy. This month we give you a glimpse into the mind
of the attacker, with a close look at privilege escalation, reverse shells, and other intrusion
techniques.
On the DVD: AlmaLinux 8.2 and blendOS

#276/November 2023

ChatGPT on Linux

Everybody’s talking about ChatGPT, and ChatGPT is talking about everything. Sure you can
access the glib and versatile AI chatbot from a web interface, but think of the possibilities if you
tune in from the Linux command line.
On the DVD: Rocky Linux 9.2 and Debian 12.1

#277/December 2023

Low-Code Tools

Experienced programmers are hard to find. Wouldn’t it be nice if subject matter experts and
occasional coders could create their own applications? The low-code revolution is all about
lowering the bar for programming knowledge. This month we show you some tools that let you
assemble an application using easy graphical building blocks.
On the DVD: MX Linux MX-23_x64 and Kali Linux 2023.3

#272/July 2023

Open Data

As long as governments have kept data, there have been people who have wanted to see it and
people who have wanted to control it. A new generation of tools, policies, and advocates seeks
to keep the data free, available, and in accessible formats. This month we bring you snapshots
from the quest for open data.
On the DVD: xubuntu 23.04 Desktop and Fedora 38 Workstation

#273/August 2023

Podcasting

On the Internet, you don’t have to wait for permission to speak to the world. Podcasting lets you
connect with your audience no matter where they are. Whether you're in it to build community,
raise awareness about your skills, or just have some fun, the tools of the Linux environment
make it easy to take your first steps.
On the DVD: Linux Mint 21.1 Cinnamon and openSUSE Leap 15.5

#274/September 2023

The Best of Small Distros

Nowadays, all the attention is on big, enterprise distributions supported by professional
developers at big, enterprise corporations, but small distros are still a thing. If you’re shopping
for a Linux to run on old hardware, if you just want a simpler system that is more responsive
and less cluttered, or if you’re looking for a special Linux tailored for a special purpose, you’re
sure to find inspiration in our look at small and specialty Linux systems.
On the DVD: 10 Small Distro ISOs and 4 Small Distro Virtual Appliances

 LINUX
 NEWSSTAND Order online:

https://bit.ly/Linux-Magazine-catalog

95

SERVICE
Back Issues

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

FEATURED EVENTS
Users, developers, and vendors meet at Linux events around the world.
We at Linux Magazine are proud to sponsor the Featured Events shown here.

For other events near you, check our extensive events calendar online at
https://www.linux-magazine.com/events.

If you know of another Linux event you would like us to add to our calendar,
please send a message with all the details to info@linux-magazine.com.

Im
ag

es
 ©

 A
le

x
W

h
it

e,
 1

23
R

F.
co

m

FOSDEM	 Feb 3-4	 Brussels, Belgium	 https://fosdem.org/

State of Open Con 24	 Feb 6-7	 London, United Kingdom	 https://stateofopencon.com/

DeveloperWeek SF Bay Area	 Feb 21-23	 San Francisco, California	 https://www.developerweek.com/

KickStart Europe 2024	 Feb 26-27	 Amsterdam, Netherlands	 https://www.kickstartconf.eu/

Open Source Camp on Kubernetes	 Feb 27	 Nürnberg, Germany	 https://opensourcecamp.de/

DeveloperWeek Live Online	 Feb 27-29	 Virtual Event	 https://www.developerweek.com/

FOSS Backstage	 Mar 4-5	 Berlin, Germany	 https://24.foss-backstage.de/	

Energy HPC Conference	 Mar 5-7	 Houston, Texas	 https://www.energyhpc.rice.edu/

SCaLE 21x	 Mar 14-17	 Pasadena, California	 https://www.socallinuxexpo.org/scale/21x

CloudFest 2024	 Mar 18-21	 Europa-Park, Germany	 https://www.cloudfest.com/

KubeCon + CloudNativeCon Europe	 Mar 19-22	 Paris, France	 https://events.linuxfoundation.org/

php[tek] 2024	 Apr 23-25	 Rosemont, Illinois	 https://tek.phparch.com/

DrupalCon Portland 2024	 May 6-9	 Portland, Oregon	 https://events.drupal.org/portland2024

ISC 2024	 May 12-16	 Hamburg, Germany	 https://www.isc-hpc.com/

PyCon US 2024	 May 15-23	 Pittsburgh, Pennsylvania	 https://us.pycon.org/2024/

 Events

 State of Open Con 2024

Date: February 6-7, 2024

Location: London, United Kingdom

Website: �https://stateofopencon.com/

OpenUK’s State of Open Con 2024 will
take place at February 6-7 at The Brewery
in London. Don't miss the UK’s Open
Technology Conference focused on Open
Source Software, Open Hardware, and
Open Data. Join us in London for our
outstanding content, amenities, and
delegate interactive experiences with
world-class speakers.

 KickStart Europe

Date: February 26-27, 2024

Location: Amsterdam, Netherlands

Website: �https://www.kickstartconf.eu/

KickStart Europe is the annual strategy
and networking conference on trends
and investments in tech and digital
infrastructure. By bringing together an
array of industry professionals at the start
of the year, KickStart Europe helps to
explore the emerging trends and
technology shaping the digital industry
and digital infrastructure of cloud,
connectivity and data centers.

 FOSS Backstage

Date: March 4-5, 2024

Location: Berlin, Germany

Website: �https://24.foss-backstage.de/

What makes an open source project
flourish? We want to encourage more
discourse about the non-coding
aspects of successful open source
projects. The sixth edition of FOSS
Backstage will take place in Berlin (and
online) on 4th and 5th March 2024.
Join us for two days of exciting talks
and discussions.

96

SERVICE
Events

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

https://stateofopencon.com/
https://www.kickstartconf.eu/
https://24.foss-backstage.de/

Editor in Chief
	 Joe Casad, jcasad@linux-magazine.com
Copy Editors
	 Amy Pettle, Aubrey Vaughn
News Editors
	 Jack Wallen, Amber Ankerholz
Editor Emerita Nomadica
	� Rita L Sooby
Managing Editor
	� Lori White
Localization & Translation
	� Ian Travis
Layout
	 Dena Friesen, Lori White
Cover Design
	 Dena Friesen
Cover Images
	 © �Rewat Phungsamrong, 123RF.com

and Lexey111, fotolia.com
Advertising
	 Brian Osborn, bosborn@linuxnewmedia.com
	 phone 	 +49 8093 7679420
Marketing Communications
	 Gwen Clark, gclark@linuxnewmedia.com
	 Linux New Media USA, LLC
	 4840 Bob Billings Parkway, Ste 104
	 Lawrence, KS 66049 USA
Publisher
	 Brian Osborn
Customer Service / Subscription
	 For USA and Canada:
	 Email: cs@linuxnewmedia.com
	 Phone: 1-866-247-2802
	 (Toll Free from the US and Canada)

	 For all other countries:
	 Email: subs@linux-magazine.com
www.linux-magazine.com
While every care has been taken in the content of the
magazine, the publishers cannot be held responsible
for the accuracy of the information contained within
it or any consequences arising from the use of it. The
use of the disc provided with the magazine or any
material provided on it is at your own risk.
Copyright and Trademarks © 2023 Linux New Media
USA, LLC.
No material may be reproduced in any form
whatsoever in whole or in part without the written
permission of the publishers. It is assumed that all
correspondence sent, for example, letters, email,
faxes, photographs, articles, drawings, are supplied
for publication or license to third parties on a non-
exclusive worldwide basis by Linux New Media USA,
LLC, unless otherwise stated in writing.
Linux is a trademark of Linus Torvalds.
All brand or product names are trademarks of their
respective owners. Contact us if we haven’t cred-
ited your copyright; we will always correct any
oversight.
Printed in Nuremberg, Germany by Kolibri Druck.
Distributed by Seymour Distribution Ltd, United
Kingdom
Represented in Europe and other territories by:
Sparkhaus Media GmbH, Bialasstr. 1a, 85625
Glonn, Germany.
Linux Magazine (Print ISSN: 1471-5678, Online
ISSN: 2833-3950, USPS No: 347-942) is published
monthly by Linux New Media USA, LLC, and dis-
tributed in the USA by Asendia USA, 701 Ashland
Ave, Folcroft PA. Application to Mail at Periodicals
Postage Prices is pending at Philadelphia, PA and
additional mailing offices. POSTMASTER: send ad-
dress changes to Linux Magazine, 4840 Bob Billings
Parkway, Ste 104, Lawrence, KS 66049, USA.

 Contact Info

Tom Alby	 22

Dave Allerton	 69, 74

Chris Binnie	 38

Zack Brown	 12

Rene Brunner	 26

Bruce Byfield	 6, 32, 46

Joe Casad	 3

Mark Crutch	 79

Adam Dix	 65

Christian Dreihsig	 16

Marco Fioretti	 48

Jon “maddog” Hall	 80

Sebastian Hilgenhof	 16

Dr. Harald Jele	 90

Vincent Mealing	 79

Pete Metcalfe	 54

Steffen Möller	 16

Graham Morrison	 84

Ali Imran Nagori	 81

Amy Pettle	 36

Mike Schilli	 60

Jack Wallen	 8

Malte Willert	 16

 Authors

WRITE FOR US
Linux Magazine is looking for authors to write articles on Linux and the
tools of the Linux environment. We like articles on useful solutions that
solve practical problems. The topic could be a desktop tool, a command-
line utility, a network monitoring application, a homegrown script, or
anything else with the potential to save a Linux user trouble and time.
Our goal is to tell our readers stories they haven’t already heard, so we’re
especially interested in original fixes and hacks, new tools, and useful ap-
plications that our readers might not know about. We also love articles on
advanced uses for tools our readers do know about – stories that take a
traditional application and put it to work in a novel or creative way.

We are currently seeking articles on the following topics for upcoming
cover themes:

•	 Open hardware

•	 Linux boot tricks

•	 Best browser extensions

Let us know if you have ideas for articles on these themes, but keep in
mind that our interests extend through the full range of Linux technical
topics, including:

•	 Security

•	 Advanced Linux tuning and configuration

•	 Internet of Things

•	 Networking

•	 Scripting

•	 Artificial intelligence

•	 Open protocols and open standards

If you have a worthy topic that isn’t on this list, try us out – we might be
interested!

Please don’t send us articles about products made by a company you
work for, unless it is an open source tool that is freely available to every-
one. Don’t send us webzine-style “Top 10 Tips” articles or other superfi-
cial treatments that leave all the work to the reader. We like complete so-
lutions, with examples and lots of details. Go deep, not wide.

Describe your idea in 1-2 paragraphs and send it to: edit@linux-magazine.com.

Please indicate in the subject line that your message is an article proposal.

97

SERVICE
Contact Info / Authors

LINUX-MAGAZINE.COM	 ISSUE 278	 JANUARY 2024

mailto:edit%40linux-magazine.com?subject=

Image © Akaratee Nithipanmangkorn, 123RF.com

Preview Newsletter
The Linux Magazine Preview is a monthly email
newsletter that gives you a sneak peek at the next
issue, including links to articles posted online.

Sign up at: https://bit.ly/Linux-Update

If intruders were on your network, would you
know it? Next month we show you how to
build an intrusion detection appliance using
a Raspberry Pi and the Suricata IDS tool.

Available Starting
January 12

Issue 279 / February 2024

Intrusion
 Detection

98

NEXT MONTH
Issue 279

JANUARY 2024	 ISSUE 278	 LINUX-MAGAZINE.COM

	Linux Magazine 278
	Welcome
	Contents
	On the DVD
	News
	Kernel News
	Science on a Crypto Rig
	Data Science Methods
	R for Science
	Distro Walk – Immutable Distros
	AlmaLinux
	Acoustic Keyloggers
	Command Line – neofetch
	datamash
	PyScript
	Programming Snapshot – Go CGI Scripting
	Teaming NICs
	RPi Flight Simulator Interface
	BCPL
	Linux Voice Introduction
	Doghouse – What is Fun?
	Compressing Files with RAR
	FOSSPicks
	Tutorial – Waydroid
	Back Issues
	Events / Authors / Masthead
	Linux Magazine 279 Preview

